【題目】如圖,AB是⊙O的直徑,弦DE垂直平分半徑OA,C為垂足,弦DF與半徑OB相交于點(diǎn)P,連結(jié)EF、EO,若DE= ,∠DPA=45°.
(1)求⊙O的半徑;
(2)求圖中陰影部分的面積.
【答案】
(1)解:∵直徑AB⊥DE,∴CE= DE= .
∵DE平分AO,
∴CO= AO= OE.又∵∠OCE=90°,
∴sin∠CEO= = ,
∴∠CEO=30°.在Rt△COE中,OE= = .
∴⊙O的半徑為2
(2)解:連接OF.
在Rt△DCP中,
∵∠DPC=45°,
∴∠D=90°﹣45°=45°.
∴∠EOF=2∠D=90°.
∴S扇形OEF= .
∵∠EOF=2∠D=90°,OE=OF=2,
∴SRt△OEF= ×OE×OF=2.
∴S陰影=S扇形OEF﹣SRt△OEF= .
【解析】(1)根據(jù)垂徑定理求出CE的值,根據(jù)特殊角的三角函數(shù)值,求出⊙O的半徑;(2)根據(jù)圓周角定理,求出∠EOF=2∠D的值,根據(jù)扇形的面積公式求出S扇形OEF的值,由△OEF的面積,得到S陰影=S扇形OEF﹣SRt△OEF的值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形 中, 在 軸上, 在 軸上,且 , ,把 沿著 對折得到 , 交 軸于點(diǎn) ,則 點(diǎn)的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形AOBC中,O為坐標(biāo)原點(diǎn),OA、OB分別在x軸、y軸上,點(diǎn)B的坐標(biāo)為(0,3),∠ABO=30°,將△ABC沿AB所在直線對折后,點(diǎn)C落在點(diǎn)D處,則點(diǎn)D的坐標(biāo)為( )
A. (,)B. (2,)C. (,)D. (,3﹣)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是正方形,點(diǎn)E,F(xiàn)分別在BC,AB上,點(diǎn)M在BA的延長線上,且CE=BF=AM,過點(diǎn)M,E分別作NM⊥DM,NE⊥DE交于N,連接NF.
(1)求證:DE⊥DM;
(2)猜想并寫出四邊形CENF是怎樣的特殊四邊形,并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC和△ADE中,AB=AD,AC=AE, ∠BAC=∠DAE,BC交
DE于點(diǎn)O,∠BAD=a.
(1)求證:∠BOD=a.
(2)若AO平分∠DAC, 求證:AC=AD.
(3)若∠C=30°,OE交AC于F,且△AOF為等腰三角形,則a= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某貨站傳送貨物的平面示意圖. 為了提高傳送過程的安全性,工人師傅欲減小傳送帶與地面的夾角,使其由45°改為30°. 已知原傳送帶AB長為4米.
(1)求新傳送帶AC的長度;
(2)如果需要在貨物著地點(diǎn)C的左側(cè)留出2米的通道,試判斷距離B點(diǎn)4米的貨物 是否需要挪走,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ 中, .取 邊的中點(diǎn) ,作 ⊥ 于點(diǎn) ,取 的中點(diǎn) ,連接 , 交于點(diǎn) .
(1)如圖1,如果 ,求證: ⊥ 并求 的值;
(2)如圖2,如果 ,求證: ⊥ 并用含 的式子表示 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1, 與 為等腰直角三角形, 與 重合, , .固定 ,將 繞點(diǎn) 順時(shí)針旋轉(zhuǎn),當(dāng) 邊與 邊重合時(shí),旋轉(zhuǎn)終止.現(xiàn)不考慮旋轉(zhuǎn)開始和結(jié)束時(shí)重合的情況,設(shè) (或它們的延長線)分別交 (或它們的延長線)于點(diǎn) ,如圖2.
(1)證明: ;
(2)當(dāng) 為何值時(shí), 是等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB=30°,OC為∠AOB內(nèi)部一條射線,點(diǎn)P為射線OC上一點(diǎn),OP=4,點(diǎn)M、N分別為OA、OB邊上動(dòng)點(diǎn),則△MNP周長的最小值為( )
A. 2 B. 4 C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com