【題目】嘉淇同學要證明命題兩組對邊分別相等的四邊形是平行四邊形是正確的,她先用尺規(guī)作出了如圖11的四邊形ABCD,并寫出了如下不完整的已知和求證。

(1)在方框中填空,以補全已知和求證;

(2)按嘉淇同學的想法寫出證明;

證明:

(3)用文字敘述所證命題的逆命題為

【答案】1)已知、求證見解析;(2)證明見解析;3)平行四邊形兩組對邊分別相等.

【解析】試題分析:(1)命題的題設為兩組對邊分別相等的四邊形,結論是是平行四邊形,根據(jù)題設可得已知:在四邊形ABCD中,BC=AD,AB=CD,求證:四邊形ABCD是平行四邊形;

2)連接BD,利用SSS定理證明ABD≌△CDB,得到∠ADB=∠DBC,ABD=∠CDB,進而得到ABCDADCB,即可得到結論

3)把命題兩組對邊分別相等的四邊形是平行四邊形的題設和結論對換可得平行四邊形兩組對邊分別相等.

1)已知:如圖1,在四邊形ABCD中,BC=AD,AB=CD,

求證:四邊形ABCD是平行四邊形.故答案為:CD,平行;

2)連接BD,在ABDCDB中,AB=CD,AD=BC,BD=DB,∴△ABD≌△CDBSSS),∴∠ADB=∠DBC,ABD=∠CDB,ABCD,ADCB,四邊形ABCD是平行四邊形;

3)用文字敘述所證命題的逆命題為:平行四邊形兩組對邊分別相等.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知三角形兩邊長分別為3和8,則該三角形第三邊的長可能是(  )
A.3
B.5
C.8
D.11

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場用36萬元購進AB兩種商品,銷售完后共獲利6萬元,其進價和售價如下表:

A

B

進價(元/件)

1200

1000

售價(元/件)

1380

1200

1)該商場購進A、B兩種商品各多少件;

2)商場第二次以原進價購進A、B兩種商品.購進B種商品的件數(shù)不變,而購進A種商品的件數(shù)是第一次的2倍,A種商品按原售價出售,而B種商品打折銷售.若兩種商品銷售完畢,要使第二次經(jīng)營活動獲利不少于81600元,B種商品最低售價為每件多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知⊙O的半徑為5,直線l是⊙O的切線,則點O到直線l的距離是( 。
A.2.5
B.3
C.5
D.10

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某研究所將某種材料加熱到1000時停止加熱,并立即將材料分為A、B兩組,采用不同工藝做降溫對比實驗,設降溫開始后經(jīng)過x min時,AB兩組材料的溫度分別為yA、yByA、yBx的函數(shù)關系式分別為yA=kx+byB=x602+m(部分圖象如圖所示),當x=40時,兩組材料的溫度相同.

1)分別求yA、yB關于x的函數(shù)關系式;

2)當A組材料的溫度降至120℃時,B組材料的溫度是多少?

3)在0x40的什么時刻,兩組材料溫差最大?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:拋物線l1y=x2+bx+3x軸于點AB,(點A在點B的左側(cè)),交y軸于點C,其對稱軸為x=1,拋物線l2經(jīng)過點A,與x軸的另一個交點為E5,0),交y軸于點D0 ).

1)求拋物線l2的函數(shù)表達式;

2P為直線x=1上一動點,連接PAPC,當PA=PC時,求點P的坐標;

3M為拋物線l2上一動點,過點M作直線MNy軸,交拋物線l1于點N,求點M自點A運動至點E的過程中,線段MN長度的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1所示,四邊形ABCD是正方形,點E是邊BC的中點且∠AEF=90°,EF交正方形外角平分線CF于點F,.

1求證:∠BAE=FEC

2取邊AB的中點G,連接EG,求證:EG=CF;

3)將ECF繞點E逆時針旋轉(zhuǎn)90° EC′A如圖2,指出AC′EG的位置關系,并說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列現(xiàn)象中屬于旋轉(zhuǎn)的是( 。
A.摩托車在急剎車時向前滑動
B.擰開水龍頭
C.雪橇在雪地里滑動
D.電梯的上升與下降

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】等腰三角形的腰和底邊的長是方程x2﹣20x+91=0的兩個根,則此三角形的周長為_____

查看答案和解析>>

同步練習冊答案