【題目】如圖,在ABC中,∠BAC90°,E為邊BC上的點(diǎn),且ABAE,D為線段BE的中點(diǎn),過點(diǎn)EEFAE,過點(diǎn)AAFBC,且AF、EF相交于點(diǎn)F

1)求證:∠C=∠BAD

2)求證:ACEF

【答案】(1)見解析;(2)見解析

【解析】

1)由等腰三角形的性質(zhì)可得ADBC,由余角的性質(zhì)可得∠C=BAD;

2)由“ASA”可證ABC≌△EAF,可得AC=EF

證明:(1)∵ABAE,D為線段BE的中點(diǎn),

ADBC

∴∠C+DAC90°,

∵∠BAC90°

∴∠BAD+DAC90°

∴∠C=∠BAD

2)∵AFBC

∴∠FAE=∠AEB

ABAE

∴∠B=∠AEB

∴∠B=∠FAE,且∠AEF=∠BAC90°,ABAE

∴△ABC≌△EAFASA

ACEF

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中.,,則

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:如果一個(gè)數(shù)的平方等于﹣1,記為i2=﹣1,這個(gè)數(shù)i叫做虛數(shù)單位,把形如a+bi(a,b為實(shí)數(shù))的數(shù)叫做復(fù)數(shù),其中a叫這個(gè)復(fù)數(shù)的實(shí)部,b叫做這個(gè)復(fù)數(shù)的虛部,它的加、減運(yùn)算與整式的加、減運(yùn)算類似.復(fù)數(shù)的乘方意義與有理數(shù)的乘方的意義類似,例如:

(1)i3=iii=i2i=﹣i

(2)(2﹣i)+(5+3i)=(2+5)+(﹣1+3)i=7+2i

根據(jù)以上信息,完成下列問題:

(1)填空:(﹣1+i)(1﹣i)=   ;i4=   

(2)化簡:i+i2+i3+i4+…+i2017

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場為了吸引顧客,設(shè)立了一個(gè)可以自由轉(zhuǎn)動的轉(zhuǎn)盤,并規(guī)定顧客消費(fèi)元以上,就能獲得一次轉(zhuǎn)動轉(zhuǎn)盤的機(jī)會.如果轉(zhuǎn)盤停止后,指針正好對準(zhǔn)紅、黃或綠色區(qū)域,顧客就可以分別獲得元,元、元的購物券(轉(zhuǎn)盤被等分成個(gè)扇形).

顧客張吉祥消費(fèi)元,他獲得購物券的概率是多少?

他得到元,元、元購物券的概率分別是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知是線段上的任意一點(diǎn)(端點(diǎn)除外),分別以為斜邊并且在的同一側(cè)作等腰直角,連接于點(diǎn),連接于點(diǎn),給出以下三個(gè)結(jié)論:①;,其中正確結(jié)論的個(gè)數(shù)是(

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB⊙O的直徑,點(diǎn)CBA的延長線上,CA=AO,點(diǎn)D⊙O上,∠ABD=30°

求證:CD⊙O的切線;

若點(diǎn)P在直線AB上,⊙P⊙O外切于點(diǎn)B,與直線CD相切于點(diǎn)E,設(shè)⊙O⊙P的半徑分別為rR,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB=16,OAB中點(diǎn),點(diǎn)C在線段OB上(不與點(diǎn)O,B重合),將OC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)270°后得到扇形COD,AP,BQ分別切優(yōu)弧于點(diǎn)PQ,且點(diǎn)P, QAB異側(cè),連接OP

(1)求證:APBQ;

(2)當(dāng)BQ=4時(shí),求扇形COQ的面積及的長(結(jié)果保留π);

(3)若APO的外心在扇形COD的內(nèi)部,請直接寫出OC的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中(請補(bǔ)畫出必要的圖形),O為坐標(biāo)原點(diǎn),直線y= -2x+4xy軸分別交于A、B兩點(diǎn),過線段OA的中點(diǎn)Cx軸的垂線l,分別與直線AB交于點(diǎn)D,與直線y=x+n交于點(diǎn)P。

(1)直接寫出點(diǎn)A、B、C、D的坐標(biāo):A ),B ),C ),D

(2)若△APD的面積等于1,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】畫出函數(shù)y2x+1的圖象,利用圖象求:

1)方程2x+10的根;

2)不等式2x+1≥0的解集;

3)當(dāng)y≤3時(shí),求x的取值范圍;

4)當(dāng)﹣3≤y≤3時(shí),求x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案