【題目】如圖,已知EC∥AB,∠EDA=∠ABF.
(1)求證:四邊形ABCD是平行四邊形;
(2)求證:OA2=OEOF.

【答案】
(1)證明:∵EC∥AB,

∴∠EDA=∠DAB,

∵∠EDA=∠ABF,

∴∠DAB=∠ABF,

∴AD∥BC,

∵DC∥AB,

∴四邊形ABCD為平行四邊形


(2)證明:∵EC∥AB,

∴△OAB∽△OED,

∵AD∥BC,

∴△OBF∽△ODA,

= ,

=

∴OA2=OEOF.


【解析】(1)由EC∥AB,∠EDA=∠ABF,可證得∠DAB=∠ABF,即可證得AD∥BC,則得四邊形ABCD為平行四邊形;(2)由EC∥AB,可得 ,由AD∥BC,可得 = ,等量代換得出 = ,即OA2=OEOF.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l1∥l2∥l3 , 等腰Rt△ABC的三個頂點A,B,C分別在l1 , l2 , l3上,∠ ACB=90°,AC交l2于點D,已知l1與l2的距離為1,l2與l3的距離為3,則AB:BD的值為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A,B,C,D,E在⊙O上,AB⊥CB于點B,tanD=3,BC=2,H為CE延長線上一點,且AH= ,CH=5

(1)求證:AH是⊙O的切線;
(2)若點D是弧CE的中點,且AD交CE于點F,求證:HF=HA;
(3)在(2)的條件下,求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩家園林公司承接了哈爾濱市平房區(qū)園林綠化工程,已知乙公司單獨完成所需要的天數(shù)是甲公司單獨完成所需天數(shù)的1.5倍,如果甲公司單獨工作10天,再由乙公司單獨工作15天,這樣就可完成整個工程的三分之二.
(1)求甲、乙兩公司單獨完成這項工程各需多少天?
(2)上級要求該工程完成的時間不得超過30天.甲、乙兩公司合作若干天后,甲公司另有項目離開,剩下的工程由乙公司單獨完成,并且在規(guī)定時間內(nèi)完成,求甲、乙兩公司合作至少多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某園林部門決定利用現(xiàn)有的349盆甲種花卉和295盆乙種花卉搭配A、B兩種園藝造型共50個,擺放在迎賓大道兩側(cè).已知搭配一個A種造型需甲種花卉8盆,乙種花卉4盆;搭配一個B種造型需甲種花卉5盆,乙種花卉9盆.
(1)某校九年級某班課外活動小組承接了這個園藝造型搭配方案的設(shè)計,問符合題意的搭配方案有幾種?請你幫助設(shè)計出來;
(2)若搭配一個A種造型的成本是200元,搭配一個B種造型的成本是360元,試說明(1)中哪種方案成本最低,最低成本是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算。
(1)解方程:y2﹣7y+10=0
(2)計算:( 2﹣|﹣1+ |+2sin60°+(1﹣ 0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象交x軸于A、B兩點,交y軸于點C,且B(1,0),C(0,3),將△BOC繞點O按逆時針方向旋轉(zhuǎn)90°,C點恰好與A重合.

(1)求該二次函數(shù)的解析式;
(2)若點P為線段AB上的任一動點,過點P作PE∥AC,交BC于點E,連結(jié)CP,求△PCE面積S的最大值;
(3)設(shè)拋物線的頂點為M,Q為它的圖象上的任一動點,若△OMQ為以O(shè)M為底的等腰三角形,求Q點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點M是BC邊上的任一點,連接AM并將線段AM繞M順時針旋轉(zhuǎn)90°得到線段MN,在CD邊上取點P使CP=BM,連接NP,BP.
(1)求證:四邊形BMNP是平行四邊形;
(2)線段MN與CD交于點Q,連接AQ,若△MCQ∽△AMQ,則BM與MC存在怎樣的數(shù)量關(guān)系?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b的圖象與x軸、y軸分別相交于A(﹣3,0),B(0,﹣3)兩點,二次函數(shù)y=x2+mx+n的圖象經(jīng)過點A.

(1)求一次函數(shù)y=kx+b的解析式;
(2)若二次函數(shù)y=x2+mx+n圖象的頂點在直線AB上,求m,n的值;
(3)當(dāng)﹣3≤x≤0時,二次函數(shù)y=x2+mx+n的最小值為﹣4,求m,n的值.

查看答案和解析>>

同步練習(xí)冊答案