【題目】閱讀材料:求1+2+22+23+24+…+22017

首先設(shè)S=1+2+22+23+24+…+22017 2S=2+22+23+24+25+…+22018

②﹣①得S=220181 1+2+22+23+24+…+22017=220181

以上解法,在數(shù)列求和中,我們稱之為:錯(cuò)位相減法

請(qǐng)你根據(jù)上面的材料,解決下列問題

1)求1+3+32+33+34+…+32019的值

2)若a為正整數(shù)且,求

【答案】1;(2

【解析】

1)根據(jù)閱讀材料可設(shè)S=1+3+32+33+34+…+32019 ①,則3S=3+32+33+34+35+…+32020 ②,用②﹣①得2S=320201,即可求出S;2)同理先設(shè)設(shè),再求出aS,再利用兩式相減,即可求出S.

1)設(shè)S=1+3+32+33+34+…+32019

3S=3+32+33+34+35+…+32020

②﹣①得2S=320201

1+3+32+33+34+…+32019=

2)設(shè)

a

②﹣①得:(a-1S=a20201

即:=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校九年級(jí)兩個(gè)班,各選派10名學(xué)生參加學(xué)校舉行的漢字聽寫大賽預(yù)賽.各參賽選手的成績(jī)?nèi)鐖D:

九(1)班:8891,9293,93,9394,9898,100

九(2)班:8993,93,9395,96,9698,98,99

通過整理,得到數(shù)據(jù)分析表如下:

班級(jí)

最高分

平均分

中位數(shù)

眾數(shù)

方差

九(1)班

100

m

93

93

12

九(2)班

99

95

n

93

84

1)直接寫出表中m、n的值;

2)依據(jù)數(shù)據(jù)分析表,有人說:最高分在(1)班,(1)班的成績(jī)比(2)班好,但也有人說(2)班的成績(jī)要好,請(qǐng)給出兩條支持九(2)班成績(jī)好的理由;

3)若從兩班的參賽選手中選四名同學(xué)參加決賽,其中兩個(gè)班的第一名直接進(jìn)入決賽,另外兩個(gè)名額在四個(gè)“98的學(xué)生中任選二個(gè),試求另外兩個(gè)決賽名額落在同一個(gè)班的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)C為⊙O外一點(diǎn),連接OC交⊙O于點(diǎn)D,連接BD并延長交線段AC于點(diǎn)E,∠CDE=∠CAD

1)求證:CD2ACEC;

2)判斷AC與⊙O的位置關(guān)系,并證明你的結(jié)論;

3)若AEEC,求tanB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△中,∠,點(diǎn)邊上一點(diǎn),以為直徑的⊙與邊相切于點(diǎn),與邊交于點(diǎn),過點(diǎn)于點(diǎn),連接

(1)求證:;

(2)若,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,四邊形ABCD中,ADBC,AD=CD,E是對(duì)角線BD上一點(diǎn),且EA=EC.

(1)求證:四邊形ABCD是菱形;

(2)如果BE=BC,且CBE:BCE=2:3,求證:四邊形ABCD是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】大課間到了,小明和小歡兩人打算從教室勻速跑到600米外的操場(chǎng)做課間操,剛出發(fā)時(shí)小明就發(fā)現(xiàn)鞋帶松了,停下來系鞋帶,小歡則直接前往操場(chǎng),小明系好鞋帶后立即沿同一路開始追趕小歡,小明在途中追上小歡后繼續(xù)前行,小明到達(dá)操場(chǎng)時(shí)課間操還沒有開始,于是小明站在操場(chǎng)等待,小歡繼續(xù)前往操場(chǎng),設(shè)小明和小歡兩人想距s(米),小歡行走的時(shí)間為t(分鐘),s關(guān)于t的函數(shù)的部分圖象如圖所示,當(dāng)兩人第三次相距60米時(shí),小明離操場(chǎng)還有_____米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,已知拋物線y=﹣x2+x+2x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),拋物線的頂點(diǎn)為Q,連接BC

1)求直線BC的解析式;

2)點(diǎn)P是直線BC上方拋物線上的一點(diǎn),過點(diǎn)PPDBC于點(diǎn)D,在直線BC上有一動(dòng)點(diǎn)M,當(dāng)線段PD最大時(shí),求PM+MB最小值;

3)如圖②,直線AQy軸于G,取線段BC的中點(diǎn)K,連接OK,將GOK沿直線AQ平移得GO'K,將拋物線y=﹣x2+x+2沿直線AQ平移,記平移后的拋物線為y,當(dāng)拋物線y經(jīng)過點(diǎn)Q時(shí),記頂點(diǎn)為Q,是否存在以G'、K'Q'為頂點(diǎn)的三角形是等腰三角形?若存在,求出點(diǎn)G的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)O為矩形ABCD的對(duì)稱中心,AB5cm,BC6cm,點(diǎn)EFG分別從ABC三點(diǎn)同時(shí)出發(fā),沿矩形的邊按逆時(shí)針方向勻速運(yùn)動(dòng),點(diǎn)E的運(yùn)動(dòng)速度為1cm/s,點(diǎn)F的運(yùn)動(dòng)速度為3cm/s,點(diǎn)G的運(yùn)動(dòng)速度為1.5cm/s,當(dāng)點(diǎn)F到達(dá)點(diǎn)C(即點(diǎn)F與點(diǎn)C重合)時(shí),三個(gè)點(diǎn)隨之停止運(yùn)動(dòng).在運(yùn)動(dòng)過程中,EBF關(guān)于直線EF的對(duì)稱圖形是EBF.設(shè)點(diǎn)EFG運(yùn)動(dòng)的時(shí)間為t(單位:s).

1)當(dāng)t等于多少s時(shí),四邊形EBFB為正方形;

2)若以點(diǎn)EB、F為頂點(diǎn)的三角形與以點(diǎn)F,CG為頂點(diǎn)的三角形相似,求t的值;

3)是否存在實(shí)數(shù)t,使得點(diǎn)B與點(diǎn)O重合?若存在,求出t的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解:給定一個(gè)矩形,如果存在另一個(gè)矩形,它的周長和面積分別是已知矩形的周長和面積的2倍,則這個(gè)矩形是給定矩形的加倍矩形.如圖,矩形是矩形加倍矩形.

解決問題:

1)當(dāng)矩形的長和寬分別為3,2時(shí),它是否存在加倍矩形?若存在,求出加倍矩形的長與寬,若不存在,請(qǐng)說明理由.

2)邊長為的正方形存在加倍正方形嗎?請(qǐng)做出判斷,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案