問題探究】

(1)如圖1,銳角△ABC中,分別以ABAC為邊向外作等腰△ABE和等腰△ACD,使AE=ABAD=AC,∠BAE=∠CAD,連接BD,CE,試猜想BDCE的大小關系,并說明理由.

【深入探究】

(2)如圖2,四邊形ABCD中,AB=7cm,BC=3cm,∠ABC=∠ACD=∠ADC=45º,求BD的長.

(3)如圖3,在(2)的條件下,當△ACD在線段AC的左側(cè)時,求BD的長.

 


 


(1)答:BD =CE. ················································································································· 1分

理由:∵∠BAE=∠CAD,

∴∠BAE+∠BAC=∠CAD+∠BAC,即∠EAC=∠BAD,··························································· 2分

又∵AE=AB,AC=AD

∴△EAC≌△BAD  (SAS) ,

BD=CE. ··························································································································· 4分

(2)解:如圖1,在△ABC的外部,以點A為直角頂點作等腰直角三角形BAE,使∠BAE=90º,AE=AB,連接EA、EB、EC. ····································································································································· 5分

,

,

∴∠BAE=

∴∠BAE+∠BAC=∠CAD+∠BAC,

即∠EAC=∠BAD

∴△EAC≌△BAD  (SAS) , ·························· 7分

BD=CE

AE=AB=7,

, ∠AEC=∠AEB=45º.

又∵∠ABC=45º,

∴∠ABC+∠ABE=45º+45º=90º, ···························································································· 8分

EC==

答:BD長是cm. ········································································································ 9分

(3)如圖2,在線段AC的右側(cè)過點AAEABA,交BC的延長線于點E, ···················· 10分

∴∠BAE=90º,

又∵∠ABC=45º,

∴∠E=∠ABC=45º,

AE=AB=7,.····················································································· 11分

又∵∠ACD=∠ADC=45 º,

∴∠BAE= ∠DAC=90º,

∴∠BAEBAC=∠DACBAC,

即∠EAC=∠BAD,

∴△EAC≌△BAD  (SAS) ,

BD=CE. ····································· 13分

BC=3,

BD=CE=(cm).

BD長是()cm.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2014-2015學年江蘇省濱?h七年級上學期期末考試數(shù)學試卷(解析版) 題型:填空題

如圖,,的中點,,則的長是

查看答案和解析>>

科目:初中數(shù)學 來源:2014-2015學年江蘇省濱?h八年級上學期期末考試數(shù)學試卷(解析版) 題型:選擇題

在平面直角坐標系中,一次函數(shù)的圖像經(jīng)過( ).

A.第一、二、三象限 B.第二、三、四象限 C.第一、三、四象限 D.第一、二、四象限

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


不等式組的所有正整數(shù)解的和為         

    

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


 .霧霾天氣嚴重影響市民的生活質(zhì)量.在今年寒假期間,某校八年一班的綜合實踐小組同學對“霧霾天氣的主要成因”隨機調(diào)查了所在城市部分市民,并對調(diào)查結(jié)果進行了整理,繪制了如下不完整的統(tǒng)計圖表,觀察分析并回答下列問題.

⑴本次被調(diào)查的市民共有多少人?

⑵分別補全條形統(tǒng)計圖和扇形統(tǒng)計圖, 并計算圖2中區(qū)域B所對應的扇形圓心角的度數(shù).

⑶若該市有100萬人口,請估計持有

A、B兩組主要成因的市民有多少人?

 


組別

霧霾天氣的主要成因

百分比

A

工業(yè)污染

45%

B

汽車尾氣排放

C

爐煙氣排放

15%

D

其他(濫砍濫伐等)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,把一塊直角三角板的直角頂點放在直尺的一邊上,若∠1=50°,則∠2的度數(shù)為( 。

 

A.

50°

B.

40°

C.

30°

D.

25°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


將x2+6x+3配方成(x+m)2+n的形式,則m= 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


用配方法解一元二次方程x2﹣6x﹣4=0,下列變形正確的是( 。

 

A.

(x﹣6)2=﹣4+36

B.

(x﹣6)2=4+36

C.

(x﹣3)2=﹣4+9

D.

(x﹣3)2=4+9

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,⊙O的直徑AB=4,∠ABC=30°,BC交⊙O于D,D是BC的中點.

(1)求BC的長;

(2)過點D作DE⊥AC,垂足為E,求證:直線DE是⊙O的切線.

 

查看答案和解析>>

同步練習冊答案