如圖,已知反比例函數(shù)的圖象上有一點P,過點P分別作x軸和y軸的垂線,垂足分別為A、B,使四邊形OAPB為正方形.又在反比例函數(shù)的圖象上有一點P1,過點P1分別作BP和y軸的垂線,垂足分別為A1、B1,使四邊形BA1P1B1為正方形,求點P和點P1的坐標(biāo).

【答案】分析:OAPB是正方形,則P點的橫縱坐標(biāo)相等,因而設(shè)坐標(biāo)是(a,a),代入函數(shù)解析式得到a=1,即OA=1,設(shè)點P1的橫坐標(biāo)n,則縱坐標(biāo)是n+1,把這點的坐標(biāo)代入函數(shù)y=,得到n+1=,解方程求n的值即可.
解答:解:∵OAPB是正方形,
∴P點的橫縱坐標(biāo)相等,因而設(shè)坐標(biāo)是(a,a),代入函數(shù)解析式得到a=1,即OA=1,點P的坐標(biāo)是(1,1),
設(shè)點P1的橫坐標(biāo)n,縱坐標(biāo)為n+1,
∴P1的坐標(biāo)是(n,n+1),把這點的坐標(biāo)代入函數(shù)y=,得到n(n+1)=1,解得n=,
∴點P1的坐標(biāo)是
點評:本題主要考查了正方形的性質(zhì),以及函數(shù)的解析式與圖形上的點的關(guān)系,函數(shù)圖象上的點,一定滿足函數(shù)解析式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知反比例函數(shù)y=
m
x
圖象與一次函數(shù)y=kx+b的圖象均經(jīng)過A(-1,4)和B(a,
4
5
)兩點,
(1)求B點的坐標(biāo)及兩個函數(shù)的解析式;
(2)若一次函數(shù)y=kx+b的圖象與x軸交于點C,求C點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知反比例函數(shù)y=
kx
(k>0)的圖象經(jīng)過點A(2,m),過點A作AB⊥x軸于點B,且S△AOB=3.若一次函數(shù)y=ax+1的圖象經(jīng)過點A,并且與x軸相交于點C,求AO:AC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知反比例函數(shù)y=
kx
的圖象與一次函數(shù)y=ax+b的圖象交于M(2,m)和N(-1,-4)兩點.
(1)求這兩個函數(shù)的解析式;
(2)求△MON的面積;
(3)請判斷點P(4,1)是否在這個反比例函數(shù)的圖象上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知反比例函數(shù)y1=
kx
和一次函數(shù)y2=ax+b的圖象相交于點A和點D,且點A的橫坐標(biāo)為1,點D的縱坐標(biāo)為-1.過點A作AB⊥x軸于點B,△AOB的面積為1.
(1)求反比例函數(shù)和一次函數(shù)的解析式.
(2)若一次函數(shù)y2=ax+b的圖象與x軸相交于點C,求∠ACO的度數(shù).
(3)結(jié)合圖象直接寫出:當(dāng)y1>y2時,x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知反比例函數(shù)y=
k
x
的圖象經(jīng)過第二象限內(nèi)的點A(-1,m),AB⊥x軸于點B,△AOB的面積為2.若直線y=ax+b經(jīng)過點A,并且經(jīng)過反比例函數(shù)y=
k
x
的圖象上另一點C(n,一2).
(1)求直線y=ax+b的解析式;
(2)設(shè)直線y=ax+b與x軸交于點M,求AM的長;
(3)在雙曲線上是否存在點P,使得△MBP的面積為8?若存在請求P點坐標(biāo);若不存在請說明理由.

查看答案和解析>>

同步練習(xí)冊答案