【題目】如圖,將拋物線M1:y=ax2+4x向右平移3個(gè)單位,再向上平移3個(gè)單位,得到拋物線M2,直線y=x與M1的一個(gè)交點(diǎn)記為A,與M2的一個(gè)交點(diǎn)記為B,點(diǎn)A的橫坐標(biāo)是﹣3.
(1)求a的值及M2的表達(dá)式;
(2)點(diǎn)C是線段AB上的一個(gè)動點(diǎn),過點(diǎn)C作x軸的垂線,垂足為D,在CD的右側(cè)作正方形CDEF.
①當(dāng)點(diǎn)C的橫坐標(biāo)為2時(shí),直線y=x+n恰好經(jīng)過正方形CDEF的頂點(diǎn)F,求此時(shí)n的值;
②在點(diǎn)C的運(yùn)動過程中,若直線y=x+n與正方形CDEF始終沒有公共點(diǎn),求n的取值范圍(直接寫出結(jié)果).
【答案】(1)M2的頂點(diǎn)為(1,﹣1),M2的表達(dá)式為y=x2﹣2x;(2)①n=﹣2;②n>3,n<﹣6.
【解析】
(1)將點(diǎn)A橫坐標(biāo)代入y=x,即可得出點(diǎn)A縱坐標(biāo),從而得出點(diǎn)A的坐標(biāo),根據(jù)點(diǎn)A在拋物線M1:y=ax2+4x上,代入即可得出a的值,將拋物線M1化為頂點(diǎn)式,根據(jù)平移的原則即可得出拋物線M2;
(2)①把點(diǎn)C橫坐標(biāo)代入y=x,即可得出點(diǎn)C坐標(biāo),從而得出點(diǎn)F坐標(biāo),把點(diǎn)F代入y=x+n即可得出n的值;
②根據(jù)直線y=x+n與正方形CDEF始終沒有公共點(diǎn),直接可得出n的取值范圍.
(1)∵點(diǎn)A在直線y=x,且點(diǎn)A的橫坐標(biāo)是﹣3,
∴A(﹣3,﹣3),
把A(﹣3,﹣3)代入y=ax2+4x,
解得a=1,
∴M1:y=x2+4x,頂點(diǎn)為(﹣2,﹣4),
∴M2的頂點(diǎn)為(1,﹣1),
∴M2的表達(dá)式為y=x2﹣2x;
(2)①由題意,C(2,2),
∴F(4,2),
∵直線y=x+n經(jīng)過點(diǎn)F,
∴2=4+n,
解得n=﹣2;
②將y=x代入y=x2﹣2x,得
x2﹣2x=x,解得:x1=0,x2=3,
∴點(diǎn)B(3,3),
當(dāng)點(diǎn)C與點(diǎn)A重合時(shí),點(diǎn)D的坐標(biāo)為(-3,0),
此時(shí)有-3+n=0,解得:n=3;
當(dāng)點(diǎn)C與點(diǎn)B重合時(shí),點(diǎn)E的坐標(biāo)為(6,0),
此時(shí)有6+n=0,解得:n=-6,
綜上可知,當(dāng)直線y=x+n與正方形CDEF始終沒有公共點(diǎn)時(shí),n>3或n<﹣6.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了增強(qiáng)學(xué)生的環(huán)保意識,某校組織了一次全校2000名學(xué)生都參加的“環(huán)保知識”考試,考題共10題.考試結(jié)束后,學(xué)校團(tuán)委隨機(jī)抽查部分考生的考卷,對考生答題情況進(jìn)行分析統(tǒng)計(jì),發(fā)現(xiàn)所抽查的考卷中答對題量最少為6題,并且繪制了如下兩幅不完整的統(tǒng)計(jì)圖.請根據(jù)統(tǒng)計(jì)圖提供的信息解答以下問題:
(1)本次抽查的樣本容量是 ;在扇形統(tǒng)計(jì)圖中,m= ,n= ,“答對8題”所對應(yīng)扇形的圓心角為 度;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)請根據(jù)以上調(diào)查結(jié)果,估算出該校答對不少于8題的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形矩形,連結(jié),延長分別交、于點(diǎn)、,延長、交于點(diǎn),一定能求出面積的條件是( )
A.矩形和矩形的面積之差B.矩形和矩形的面積之差
C.矩形和矩形的面積之差D.矩形和矩形的面積之差
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AD為⊙O的直徑,BC為⊙O的切線,切點(diǎn)為M,分別過A,D兩點(diǎn)作BC的垂線,垂足分別為B,C,AD的延長線與BC相交于點(diǎn)E.
(1)求證:△ABM∽△MCD;
(2)若AD=8,AB=5,求ME的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,函數(shù)y(x>0)的圖象與直線y=2x+1交于點(diǎn)A(1,m)
(1)求k,m的值;
(2)已知點(diǎn)P(0,n)(n>0),過點(diǎn)P作平行于x軸的直線,交直線y=2x+1于點(diǎn)B,交函數(shù)y(x>0)的圖象于點(diǎn)C.橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).
①當(dāng)n=1時(shí),寫出線段BC上的整點(diǎn)的坐標(biāo);
②若y(x>0)的圖象在點(diǎn)A,C之間的部分與線段AB,BC所圍成的區(qū)域內(nèi)(包括邊界)恰有6個(gè)整點(diǎn),直接寫出n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠A=∠B=90°,AB=6,AD=1,BC=2,P為AB邊上的動點(diǎn),當(dāng)△PAD與△PBC相似時(shí),PA=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為正方形,△AEF為等腰直角三角形,∠AEF=90°,連接FC,G為FC的中點(diǎn),連接GD,ED.
(1)如圖①,E在AB上,直接寫出ED,GD的數(shù)量關(guān)系.
(2)將圖①中的△AEF繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),其它條件不變,如圖②,(1)中的結(jié)論是否成立?說明理由.
(3)若AB=5,AE=1,將圖①中的△AEF繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)一周,當(dāng)E,F,C三點(diǎn)共線時(shí),直接寫出ED的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖的正方形網(wǎng)格中,每一個(gè)小正方形的邊長為1格點(diǎn)△ABC(頂點(diǎn)是網(wǎng)格線交點(diǎn)的三角形)
(1)將△ABC向下平移6個(gè)單位得到△A1B1C1,畫出△A1B1C1:
(2)將△A1B1C1繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到△A2B1C2畫出△A2B1C2;
(3)求在平移和旋轉(zhuǎn)變換過程中線段BC所掃過的圖形面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=y1+y2,其中y1與x成反比例,y2與x﹣2成正比例,函數(shù)的自變量x的取值范圍是x,且當(dāng)x=1或x=4時(shí),y的值均為.
請對該函數(shù)及其圖象進(jìn)行如下探究:
(1)解析式探究:根據(jù)給定的條件,可以確定出該函數(shù)的解析式為: .
(2)函數(shù)圖象探究:
①根據(jù)解析式,補(bǔ)全下表:
②根據(jù)表中數(shù)據(jù),在如圖所示的平面直角坐標(biāo)系中描點(diǎn),并畫出函數(shù)圖象
(3)結(jié)合畫出的函數(shù)圖象,解決問題:
①當(dāng)x,,8時(shí),函數(shù)值分別為y1,y2,y3,則y1,y2,y3的大小關(guān)系為: ;(用“<”或“=”表示)
②若直線y=k與該函數(shù)圖象有兩個(gè)交點(diǎn),則k的取值范圍是 ,此時(shí),x的取值范圍是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com