【題目】翻開八年級數(shù)學課本,恰好翻到第28,這個事件是(  )

A. 必然事件 B. 隨機事件 C. 不可能事件 D. 確定事件

【答案】B

【解析】分析:根據(jù)事件發(fā)生的可能性大小判斷相應事件的類型即可.

詳解:翻開八年級數(shù)學課本,恰好翻到第28這一事件是隨機事件,

故選B.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,ABCD,ABC=ADC,DE垂直于對角線AC,垂足是E,連接BE.

(1)求證:四邊形ABCD是平行四邊形;

(2)若點E是AC的中點,判斷BE與AC的位置關系,并說明理由;

(3)若ABE是等邊三角形,AD=,求對角線AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某高樓頂部有一信號發(fā)射塔,小凡在矩形建筑物ABCD的A、C兩點處測得塔頂F的仰角分別為α和β,AD=18m,CD=78m.

(1)用α和β的三角函數(shù)表示CE;

(2)當α=30°、β=60°時,求EF(結果精確到1m).

(參考數(shù)據(jù):1.414,1.732)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為提高飲水質量,越來越多的居民選購家用凈水器.一商場抓住商機,從廠家購進了A、B兩種型號家用凈水器共160臺,A型號家用凈水器進價是150元/臺,B型號家用凈水器進價是350元/臺,購進兩種型號的家用凈水器共用去36000元.
(1)求A、B兩種型號家用凈水器各購進了多少臺;
(2)為使每臺B型號家用凈水器的毛利潤是A型號的2倍,且保證售完這160臺家用凈水器的毛利潤不低于11000元,求每臺A型號家用凈水器的售價至少是多少元.(注:毛利潤=售價﹣進價)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,點D在AB邊上,將△CBD沿CD折疊,使點B恰好落在AC邊上的點E處,若∠A=25°,則∠ADE的度數(shù)為(
A.20°
B.30°
C.40°
D.50°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ACB中,∠ACB=90°,AC=BC=3,CD=1,CH⊥BD于H,點O是AB中點,連接OH,則OH=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列圖形中,既是軸對稱圖形,又是中心對稱圖形的是( 。

A.等腰梯形B.平行四邊形C.正三角形D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料: 如圖1,在Rt△ABC中,∠C=90°,D為邊AC上一點,DA=DB,E為BD延長線上一點,∠AEB=120°,猜想AC、BE、AE的數(shù)量關系,并證明.
小明的思路是:根據(jù)等腰△ADB的軸對稱性,將整個圖形沿著AB邊的垂直平分線翻折,得到點C的對稱點F,如圖2,過點A作AF⊥BE,交BE的延長線于F,請補充完成此問題;
參考小明思考問題的方法,解答下列問題:
如圖3,等腰△ABC中,AB=AC,D、F在直線BC上,DE=BF,連接AD,過點E作EG∥AC交FH的延長線于點G,∠DFG+∠D=∠BAC.

(1)探究∠BAD與∠CHG的數(shù)量關系;
(2)請在圖中找出一條和線段AD相等的線段,并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知△ABC三個頂點的坐標分別是A(2,2),B(4,0),C(4,﹣4)

(1)請畫出△ABC向左平移6個單位長度后得到的△A1B1C1

(2)以點O為位似中心,將△ABC縮小為原來的,得到△A2B2C2,請在y軸右側畫出△A2B2C2,并求出∠A2C2B2的正弦值.

查看答案和解析>>

同步練習冊答案