分析 (1)根據(jù)矩形的對角線互相平分可得AO=CO,再根據(jù)兩直線平行,內(nèi)錯角相等可得∠MCO=∠ANO,然后利用“角邊角”證明△AON和△COM全等,根據(jù)全等三角形對應邊相等可得AN=CM,ON=OM,得出梯形ABMN和梯形CDNM關(guān)于點O對稱,即可得出結(jié)論;
(2)根據(jù)翻折的性質(zhì),MN與AC互相垂直時點C與A重合;
(3)連接AM,根據(jù)翻折的性質(zhì)可得AM=MC,AD′=CD,∠AMN=∠CMN,再根據(jù)兩直線平行,內(nèi)錯角相等可得∠ANM=∠CMN,然后求出∠AMN=∠ANM,根據(jù)等角對等邊可得AM=AN,利用“HL”證明△ABM和△AD′N全等,根據(jù)全等三角形的面積相等可得S△AD′N=S△ABM,再根據(jù)三角形的面積求出BM=$\frac{1}{2}$AN,然后求解即可.
解答 (1)證明:如圖①,
∵O為對角線的交點,
∴AO=CO,OB=OD,AD∥BC,
∵矩形ABCD的邊AD∥BC,
∴∠MCO=∠ANO,
在△AON和△COM中,$\left\{\begin{array}{l}{∠MCO=∠ANO}&{\;}\\{AO=CO}&{\;}\\{∠AON=∠COM}&{\;}\end{array}\right.$,
∴△AON≌△COM(ASA),
∴AN=CM,ON=OM,
∴梯形ABMN和梯形CDNM關(guān)于點O對稱,
∴梯形ABMN≌梯形CDNM,
∴梯形ABMN的面積等于梯形CDNM的面積;
(2)解:當MN滿足MN⊥AC時,才能使得點C恰好與點A重合.
(3)解:如圖,連接AM,
∵矩形ABCD沿MN折疊,點C與點A重合,
∴AM=MC,AD′=CD,∠AMN=∠CMN,
∵AD∥BC,
∴∠ANM=∠CMN,
∴∠AMN=∠ANM,
∴AM=AN,
在△ABM和△AD′N中,$\left\{\begin{array}{l}{AM=AN}\\{AB=AD'}\end{array}\right.$,
∴△ABM≌△AD′N(HL),
∴S△AD′N=S△ABM,
∵翻折后不重疊部分的面積是重疊部分的面積的$\frac{1}{2}$,
∴$\frac{1}{2}$AB•BM=$\frac{1}{2}$×$\frac{1}{2}$AN•AB,
∴BM=$\frac{1}{2}$AN,
∵AM=MC=AN,
∴BM:MC=1:4,
∴MC=4BM.
點評 本題是四邊形綜合題目,考查了翻折變換的性質(zhì),全等三角形的判定與性質(zhì),矩形的性質(zhì),等角對等邊的性質(zhì),以及平行線的性質(zhì),熟記翻折前后的兩個圖形能夠完全重合得到相等的邊和角是解題的關(guān)鍵.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | 2個 | B. | 3個 | C. | 4個 | D. | 5個 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | 2.3×105 | B. | 3.2×105 | C. | 2.3×106 | D. | 5×106 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com