【題目】如圖,在ABCD中,∠BAD的角平分線交BC于點(diǎn)E,交DC的延長(zhǎng)線于點(diǎn)F,連接DE

1)求證:DADF

2)若∠ADE=∠CDE30°,DE2,求ABCD的面積.

【答案】(1)詳見(jiàn)解析;(2)4

【解析】

1)根據(jù)平行四邊形的性質(zhì)得出AB=CD,ADBC,求出∠FAD=AFB,根據(jù)角平分線定義得出∠FAD=FAB,求出∠AFB=FAB,即可得出答案;

2)求出△ABF為等邊三角形,根據(jù)等邊三角形的性質(zhì)得出AF=BF=AB,∠ABE=60°,在RtBEF中,∠BFA=60°,BE=,解直角三角形求出EF=2,BF=4AB=BF=4,BC=AD=2,即可得出答案.

1)證明:∵四邊形ABCD為平行四邊形,

ABCD

∴∠BAF=∠F

AF平分∠BAD

∴∠BAF=∠DAF

∴∠F=∠DAF

ADFD

2)解:∵∠ADE=∠CDE30°,ADFD,

DEAF

tan∠ADE,

AE2

S平行四邊形ABCD2SADEAEDE4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠BAC和∠ABC的平分線相交于點(diǎn)O,過(guò)點(diǎn)OEFABBC于點(diǎn)F,交AC于點(diǎn)E,過(guò)點(diǎn)OODBCD,下列四個(gè)結(jié)論:①∠AOB=90°+C;②AE+BF=EF;③當(dāng)∠C=90°時(shí),E、F分別是AC、BC的中點(diǎn);④若OD=CE+CF=SCEF=,其中正確的是______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】近年來(lái),各地廣場(chǎng)舞噪音干擾的問(wèn)題備受關(guān)注,相關(guān)人員對(duì)本地區(qū)15﹣65歲年齡段的500名市民進(jìn)行了隨機(jī)調(diào)查,在調(diào)查過(guò)程中對(duì)廣場(chǎng)舞噪音干擾的態(tài)度有以下五種:A:沒(méi)影響;B:影響不大;C:有影響,建議做無(wú)聲運(yùn)動(dòng),D:影響很大,建議取締;E:不關(guān)心這個(gè)問(wèn)題,將調(diào)查結(jié)果繪統(tǒng)計(jì)整理并繪制成如下兩幅不完整的統(tǒng)計(jì)圖.

請(qǐng)根據(jù)以上信息解答下列問(wèn)題:

(1)填空m=   ,態(tài)度為C所對(duì)應(yīng)的圓心角的度數(shù)為   

(2)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)若全區(qū)15﹣65歲年齡段有20萬(wàn)人,估計(jì)該地區(qū)對(duì)廣場(chǎng)舞噪音干擾的態(tài)度為B的市民人數(shù);

(4)若在這次調(diào)查的市民中,從態(tài)度為A的市民中抽取一人的年齡恰好在年齡段15﹣35歲的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平行四邊形ABCD中,∠BDC=30°,DC=4,AEBDECFBDF,且EF恰好是BD的三等分點(diǎn),AECF的延長(zhǎng)線分別交DC、ABN、M點(diǎn),那么四邊形MENF的面積是( )

A.B.C.2D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知平分

1 ;

2)若在圖1中畫(huà)射線,設(shè),平分,用含的代數(shù)式表示的大;

3)如圖2,若線段分別為同一鐘表上某一時(shí)刻的時(shí)針與分針,,在時(shí)針與分針轉(zhuǎn)動(dòng)過(guò)程中,始終平分,則經(jīng)過(guò)多少時(shí)間后,的度數(shù)第一次等于

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+2ax+c的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊)AB=4,與y軸交于點(diǎn)C,OC=OA,點(diǎn)D為拋物線的頂點(diǎn).

(1)求拋物線的解析式;

(2)點(diǎn)M(m,0)為線段AB上一點(diǎn)(點(diǎn)M不與點(diǎn)A、B重合),過(guò)點(diǎn)M作x軸的垂線,與直線AC交于點(diǎn)E,與拋物線交于點(diǎn)P,過(guò)點(diǎn)P作PQ∥AB交拋物線于點(diǎn)Q,過(guò)點(diǎn)Q作QN⊥x軸于點(diǎn)N,可得矩形PQNM,如圖1,點(diǎn)P在點(diǎn)Q左邊,當(dāng)矩形PQNM的周長(zhǎng)最大時(shí),求m的值,并求出此時(shí)的△AEM的面積;

(3)已知H(0,﹣1),點(diǎn)G在拋物線上,連HG,直線HG⊥CF,垂足為F,若BF=BC,求點(diǎn)G的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】 甲、乙兩輛汽車沿同一路線趕赴距出發(fā)地480千米的目的地,乙車比甲車晚出發(fā)2小時(shí)(從甲車出發(fā)時(shí)開(kāi)始計(jì)時(shí)).圖中折線、線段分別表示甲、乙兩車所行路程(千米)與時(shí)間(小時(shí))之間的函數(shù)關(guān)系對(duì)應(yīng)的圖象(線段表示甲出發(fā)不足2小時(shí)因故停車檢修).請(qǐng)根據(jù)圖象所提供的信息,解決如下問(wèn)題:

(1)求乙車所行路程與時(shí)間的函數(shù)關(guān)系式;(4分)

(2)求兩車在途中第二次相遇時(shí),它們距出發(fā)地的路程;(4分)

(3)乙車出發(fā)多長(zhǎng)時(shí)間,甲、乙兩車相距80千米?(寫(xiě)出解題過(guò)程) (4分)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,小明在大樓45米高(即PH=45米,且PH⊥HC)的窗口P處進(jìn)行觀測(cè),測(cè)得山坡上A處的俯角為15°,山腳B處的俯角為60°,已知該山坡的

坡度i(即tanABC)為1 .(點(diǎn)P、H、BC、A在同一個(gè)平面上

點(diǎn)H、B、C在同一條直線上)

1∠PBA的度數(shù)等于________度;

2)求A、B兩點(diǎn)間的距離(結(jié)果精確到0.1米,參考數(shù)據(jù): ≈1.414, ≈1.732.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù)的圖象交于C、D兩點(diǎn), C點(diǎn)的坐標(biāo)是(4,-1),D點(diǎn)的橫坐標(biāo)為-2

1)求反比例函數(shù)與一次函數(shù)的關(guān)系式;

2)根據(jù)圖象直接回答:當(dāng)x為何值時(shí),一次函數(shù)的值小于反比例函數(shù)的值?

查看答案和解析>>

同步練習(xí)冊(cè)答案