【題目】已知反比例函數(shù)的圖象經(jīng)過點A(1,3).
(1)試確定此反比例函數(shù)的解析式;
(2)當=2時, 求y的值;
(3)當自變量從5增大到8時,函數(shù)值y是怎樣變化的?
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,拋物線與x軸交于點A、B兩點(點A在點B的左側),與y軸交于點C,過點C作CD∥x軸,且交拋物線于點D,連接AD,交y軸于點E,連接AC.
(1)求S△ABD的值;
(2)如圖2,若點P是直線AD下方拋物線上一動點,過點P作PF∥y軸交直線AD于點F,作PG∥AC交直線AD于點G,當△PGF的周長最大時,在線段DE上取一點Q,當PQ+QE的值最小時,求此時PQ+ QE的值;
(3)如圖3,M是BC的中點,以CM為斜邊作直角△CMN,使CN∥x軸,MN∥y軸,將△CMN沿射線CB平移,記平移后的三角形為△C′M′N′,當點N′落在x軸上即停止運動,將此時的△C′M′N′繞點C′逆時針旋轉(旋轉度數(shù)不超過180°),旋轉過程中直線M′N′與直線CA交于點S,與y軸交于點T,與x軸交于點W,請問△CST是否能為等腰三角形?若能,請求出所有符合條件的WN′的長度;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AD平分∠BAC交BC于點D,AE⊥BC,垂足為E,且CF∥AD.
(1)如圖1,若△ABC是銳角三角形,∠B=30°,∠ACB=70°,則∠CFE= 度;
(2)若圖1中的∠B=x,∠ACB=y,則∠CFE= ;(用含x、y的代數(shù)式表示)
(3)如圖2,若△ABC是鈍角三角形,其他條件不變,則(2)中的結論還成立嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,ABCD中,M、N是BD的三等分點,連接CM并延長交AB于點E,連接EN并延長交CD于點F,以下結論:
①E為AB的中點;
②FC=4DF;
③S△ECF=;
④當CE⊥BD時,△DFN是等腰三角形.
其中一定正確的是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知:在直角梯形ABCD中,AD∥BC,∠C=90°,AB=AD=25,BC=32,連接BD,AE⊥BD,垂足為E.
(1)求證:△ABE∽△DBC;
(2)求線段AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一副三角板如圖擺放,點F是 45°角三角板△ABC的斜邊的中點,AC=4.當 30°角三角板DEF的直角頂點繞著點F旋轉時,直角邊DF,EF分別與AC,BC相交于點 M, N.在旋轉過程中有以下結論:①MF=NF;②CF與MN可能相等嗎;③MN 長度的最小值為 2;④四邊形CMFN的面積保持不變; ⑤△CMN面積的最大值為 2.其中正確的個數(shù)是_________.(填寫序號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,P為平行四邊形ABCD邊AD上一點,E、F分別為PB、PC的中點,△PEF、△PDC、△PAB的面積分別為S、S1、S2,若S=2,則S1+S2=( )
A. 4 B. 6 C. 8 D. 不能確定
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,五邊形ABCDE中有一正三角形ACD,若AB=DE,BC=AE,∠E=115°,則∠BAE的度數(shù)為何?( 。
A. 115 B. 120 C. 125 D. 130
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】通過類比聯(lián)想、引申拓展研究典型題目,可達到解一題知一類的目的.下面是一個案例,請補充完整.
原題:如圖1,點E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,連接EF,則EF=BE+DF,試說明理由.
(1)思路梳理
∵AB=CD,
∴把△ABE繞點A逆時針旋轉90°至△ADG,可使AB與AD重合.
∵∠ADC=∠B=90°,
∴∠FDG=180°,點F、D、G共線.
根據(jù)___________,SAS
易證△AFG≌___________△AEF
,得EF=BE+DF.
(2)類比引申
如圖2,四邊形ABCD中,AB=AD,∠BAD=90°.點E、F分別在邊BC、CD上,∠EAF=45°.若∠B、∠D都不是直角,則當∠B與∠D滿足等量關系______________∠B+∠D=180°
時,仍有EF=BE+DF.
(3)聯(lián)想拓展
如圖3,在△ABC中,∠BAC=90°,AB=AC,點D、E均在邊BC上,且∠DAE=45°.猜想BD、DE、EC應滿足的等量關系,并寫出推理過程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com