年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,在以O(shè)為圓心的兩個(gè)同心圓中,大圓的直徑AB交小圓于C、D兩點(diǎn),AC=CD=DB,分別以C、D為圓心,以CD為半徑作圓.若AB=6cm,則圖中陰影部分的面積為 cm2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,點(diǎn)A、B、C順次在直線(xiàn)l上,點(diǎn)M是線(xiàn)段AC的中點(diǎn),點(diǎn)B是線(xiàn)段MC的中點(diǎn),點(diǎn)N是線(xiàn)段BC的中點(diǎn).要求出MN的長(zhǎng)度,那么只需條件( )
A.AB=12 B.BC=4 C.AM=5 D. CN=2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖1,拋物線(xiàn)y=ax2+bx+c(a≠0)的頂點(diǎn)為(1,4),交x軸于A、B兩點(diǎn),交y軸于點(diǎn)D,其中B點(diǎn)的坐標(biāo)為(3,0).
(1)求拋物線(xiàn)的解析式.
(2)如圖2,過(guò)點(diǎn)A的直線(xiàn)與拋物線(xiàn)交于點(diǎn)E,交y軸于點(diǎn)F,其中E點(diǎn)的橫坐標(biāo)為2,直線(xiàn)PQ為拋物線(xiàn)的對(duì)稱(chēng)軸.①說(shuō)明點(diǎn)D與點(diǎn)E關(guān)于直線(xiàn)PQ對(duì)稱(chēng).
②若點(diǎn)G為PQ上一動(dòng)點(diǎn),則x軸上是否存在一點(diǎn)H,使D、G、F、H四點(diǎn)圍成的四邊形周長(zhǎng)最?若存在,求出這個(gè)最小值及G、H的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)如圖3,拋物線(xiàn)上是否存在一點(diǎn)T,過(guò)點(diǎn)T作x的垂線(xiàn),垂足為M,過(guò)點(diǎn)M作直線(xiàn)MN∥BD,交線(xiàn)段AD于點(diǎn)N,連接MD,使△DNM∽△BMD,若存在,求出點(diǎn)T的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
有以下四個(gè)命題:
①反比例函數(shù),當(dāng)x>-2時(shí),y隨x的增大而增大;
②拋物線(xiàn)與兩坐標(biāo)軸無(wú)交點(diǎn);
③平分弦的直徑垂直于弦,且平分弦所對(duì)的;、苡幸粋(gè)角相等的兩個(gè)等腰三角形相似;
其中正確命題的個(gè)數(shù)為( ).
A.3 B.2 C.1 D.0
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,兩條公路OA和OB相交于O點(diǎn),在∠AOB的內(nèi)部有工廠C和D,現(xiàn)要修建一個(gè)貨站E,使貨站E到兩條公路OA、OB的距離相等,且到兩工廠C、D的距離相等,用尺規(guī)作出貨站E的位置.(要求:不寫(xiě)作法,保留作圖痕跡,寫(xiě)出結(jié)論)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com