【題目】如圖,Rt△ABC中,∠ACB=90°,AC=6,AB=10,⊙C與AB相切于點D,延長AC到點E,使CE=AC,連接EB.過點E作BE的垂線,交⊙C于點P、Q,交BA的延長線于點F.
(1)求AD的長;
(2)求證:EB與⊙C相切;
(3)求線段PQ的長.
【答案】(1);(2)見解析;(3)
【解析】
(1)連結CD,易證△ACD∽△ABC,由相似三角形的性質即可求得AD的長;
(2)過點C作CK⊥BE交BE于點K,要證EB與⊙C相切,即證CK=CD=圓的半徑,由∠ACB=90°且CE=AC可證得BE是∠ABE的平分線,即可證得CK=CD;
(3)過點C作CG⊥FE交FE于點G,由矩形的性質和全等三角形的性質得CG=AD,由勾股定理可求得GQ,即可求出PQ.
解:(1)如圖,連接CD,
∵⊙C與AB相切于點D,
∴CD⊥AB,則∠ADC=90°,
∴∠CAD+∠ACD=90°,
∵∠ACB=90°,
∴∠CAD+∠CBA=90°,∠ADC=∠ACB=90°,
∴∠ACD=∠CBA,
∴△ACD∽△ABC,
∴,
∵AC=6,AB=10,
∴,
∴AD=;
(2)如圖,過點C作CK⊥BE交BE于點K,
∵∠ACB=90°,CE=AC,即BC垂直且平分AE,
∴BA=BE,△BAE是等腰三角形,
∴BC平分∠ABE,
∵CD⊥AB,CK⊥BE,
∴CK=CD=圓的半徑,
∴EB與⊙C相切;
(3)如圖,過點C作CG⊥FE交FE于點G,連結CQ,
∴PQ=2QG,∠CGE=90°,
又∵EF⊥BE,CK⊥BE,
∴∠GEK=∠CKE=∠CGE=90°,
∴四邊形EGCF為矩形,
∴GE=CK,
由(2)可知CK=CD,
∴GE=CD,
在Rt△ADC和Rt△CGE中,
∴Rt△ADC≌Rt△CGE,
∴CG=AD=,
∵AC=6,AD=,
∴,
∴CQ=CD=,
∴,
∴PQ=2GQ=.
科目:初中數學 來源: 題型:
【題目】已知,如圖1,拋物線過三點,頂點為點,連接,點為拋物線對稱軸上一點,連接,直線過點兩點.
(1)求拋物線及直線的函數解析式;
(2)求的最小值;
(3)求證:∽;
(4)如圖2,若點是在拋物線上且位于第一象限內的一動點,請直接寫出面積的最大值及此時點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在直角坐標平面內,點O在坐標原點,已知點A(3,1)、B(2,0)、C(4,﹣2).
(1)求證:△AOB∽△OCB;
(2)求∠AOC的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“安全教育平臺”是中國教育學會為方便學長和學生參與安全知識活動、接受安全提醒的一種應用軟件.某校為了了解家長和學生參與“防溺水教育”的情況,在本校學生中隨機抽取部分學生作調查,把收集的數據分為以下4類情形:A.僅學生自己參與;B.家長和學生一起參與;
C.僅家長自己參與; D.家長和學生都未參與.
請根據圖中提供的信息,解答下列問題:
(1)在這次抽樣調查中,共調查了________名學生;
(2)補全條形統計圖,并在扇形統計圖中計算C類所對應扇形的圓心角的度數;
(3)根據抽樣調查結果,估計該校2000名學生中“家長和學生都未參與”的人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線 與x軸交于點A(﹣1,0),頂點坐標(1,n),與y軸的交點在(0,3),(0,4)之間(包含端點),則下列結論:①abc>0;②3a+b<0;③﹣≤a≤﹣1;④a+b≥am2+bm(m為任意實數);⑤一元二次方程 有兩個不相等的實數根,其中正確的有( 。
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,MN為⊙OD的直徑,PM為⊙O的切線,PM=MN=4,點A在⊙O上,AB⊥PA交MN于B.若B為ON的中點,則AB的長為( )
A.B.C.D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形 ABCD 中,E 是邊 BC 邊上一點,連接 DE 交對角線 AC 于點 F,若 AB=6,AD=8,BE=2,則 AF 的長為 _________________
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖 1,在直角三角形 ABC 中, BAC 90°, AD 為斜邊 BC 上的高線.
(1)求證: AD BD CD ;
(2)如圖 2,過 A 分別作BAD,DAC 的角平分線,交 BC 于 E, M 兩點,過 E 作 AE 的垂線, 交 AM 于 F .
①當tan C 時,求的值;
② 如圖 3 ,過 C 作 AF 的垂線 CG ,過 G 點作 GN // AD 交 AC 于 M 點, 連接 MN .若EAD 15°, AB 1,直接寫出 MN 的長度.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com