分析 過點A,作AB⊥y軸于點B,AC⊥x軸于點C,由點A的坐標(biāo),可求出∠APB的度數(shù),進而可得到∠APO的度數(shù),再根據(jù)點P的橫坐標(biāo)是A轉(zhuǎn)過的長度,縱坐標(biāo)是2,由弧長公式即可求解.
解答 解:過點A,作AB⊥y軸于點B,AC⊥x軸于點C,易得四邊形ABOC是矩形,
∴AC=BO,AB=OC,
∵A點的坐標(biāo)為(1,2+$\sqrt{3}$),⊙P的半徑是2,
∴AB=OC=1,BP=AC-OP=2+$\sqrt{3}$-2=$\sqrt{3}$,
∴tan∠APB=$\frac{1}{\sqrt{3}}$=$\frac{\sqrt{3}}{3}$
∴∠APB=30°,
∴∠APO=150°,
∴A轉(zhuǎn)過的長度=$\frac{150×π×2}{180}$=$\frac{5}{3}π$,
即點P的坐標(biāo)是($\frac{5}{3}π$,2).
故答案為($\frac{5}{3}π$,2).
點評 本題主要考查了切線的性質(zhì),坐標(biāo)與圖形的關(guān)系,弧長公式的計算,掌握公式是解題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 1 | C. | 0 | D. | -3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{60}{x+18}$=$\frac{48}{x-18}$ | B. | $\frac{60}{18-x}$=$\frac{48}{18+x}$ | C. | $\frac{60}{18+x}$=$\frac{48}{18-x}$ | D. | 60(18+x)=48(x-18) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com