【題目】在△ABC和△DEF中,ABDE,∠A=∠D,要使△ABC≌△DEF,必須增加的一個條件是_____(填寫一個即可)

【答案】此題答案不唯一,如ACDF或∠B=∠E或∠C=∠F

【解析】

由在ABCDEF中,ABDE,∠A=∠D,要使ABC≌△DEF,根據(jù)三角形全等的判定定理:SAS,ASA,AAS即可得可添加條件為:ACDF或∠B=∠E或∠C=∠F等.

可添加條件為:ACDF或∠B=∠E或∠C=∠F等;

①當添加ACDF時,

ABCDEF中,

,

∴△ABC≌△DEFSAS);

②當添加∠B=∠E時,

ABCDEF中,

,

∴△ABC≌△DEFASA);

③當添加∠C=∠F時,

ABCDEF中,

,

∴△ABC≌△DEFAAS).

故答案為:此題答案不唯一,如ACDF或∠B=∠E或∠C=∠F等.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知0≤x≤ ,那么函數(shù)y=﹣2x2+8x﹣6的最大值是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若一個正整數(shù)能表示為兩個正整數(shù)的平方差,則稱這個正整數(shù)為“智慧數(shù)”(如,.已知智慧數(shù)按從小到大的順序構(gòu)成如下數(shù)列:則第個智慧數(shù)是__________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市某農(nóng)場有A、B兩種型號的收割機共20臺,每臺A型收割機每天可收大麥100畝或者小麥80畝,每臺B型收割機每天可收大麥80畝或者小麥60畝,該農(nóng)場現(xiàn)有19 000畝大麥和11 500畝小麥先后等待收割.先安排這20臺收割機全部收割大麥,并且恰好10天時間全部收完.

(1)問A、B兩種型號的收割機各多少臺?

(2)由于氣候影響,要求通過加班方式使每臺收割機每天多完成10%的收割量,問這20臺收割機能否在一周時間內(nèi)完成全部小麥收割任務(wù)?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列交通標志中,是中心對稱圖形的是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,點D是AC的中點,且∠A+∠CDB=90°,過點A,D作⊙O,使圓心O在AB上,⊙O與AB交于點E.

(1)求證:直線BD與⊙O相切;
(2)若AD:AE= ,BC=6,求切線BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一節(jié)數(shù)學課上,老師布置了一道課堂練習:“如圖,在△ABC中,∠B=∠C,求證:ABAC“,小明發(fā)現(xiàn),他取BC的中點D,連接AD后,無法證明△ABD≌△ACD,故舉手提問老師,老師聽了他的困惑,告訴他只要再作兩條垂線段就可以證明了,你知道如何繼續(xù)證明嗎?請你寫下完整的證明過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某廠為了檢驗甲、乙兩車間生產(chǎn)的同一款新產(chǎn)品的合格情況(尺寸范圍為~的產(chǎn)品為合格〉.隨機各抽取了20個祥品迸行檢測.過程如下:

收集數(shù)據(jù)(單位:):

甲車間:168,175,180,185,172,189,185,182,185,174,192,180,185,178,173,185,169,187,176,180.

乙車間:186,180,189,183,176,173,178,167,180,175,178,182,180,179,185,180,184,182,180,183.

整理數(shù)據(jù):

組別頻數(shù)

165.5~170.5

170.5~175.5

175.5~180.5

180.5~185.5

185.5~190.5

190.5~195.5

甲車間

2

4

5

6

2

1

乙車間

1

2

2

0

分析數(shù)據(jù):

車間

平均數(shù)

眾數(shù)

中位數(shù)

方差

甲車間

180

185

180

43.1

乙車間

180

180

180

22.6

應(yīng)用數(shù)據(jù);

(1)計算甲車間樣品的合格率.

(2)估計乙車間生產(chǎn)的1000個該款新產(chǎn)品中合格產(chǎn)品有多少個?

(3)結(jié)合上述數(shù)據(jù)信息.請判斷哪個車間生產(chǎn)的新產(chǎn)品更好.并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線 與x軸交于點A,B,與y軸負半軸交于點C且OB=OC,點P為拋物線上的一個動點,且點P位于x軸下方,點P與點C不重合。

(1)求拋物線的解析式
(2)若△PAC的面積為 ,求點P的坐標
(3)若以A、B、C、P為頂點的四邊形面積記作S,則S取何值時,對應(yīng)的點P有且只有2個?

查看答案和解析>>

同步練習冊答案