【題目】如圖①,已知△ABC內(nèi)接于⊙O,BC交直徑AD于點E,過點C作AD的垂線交AB的延長線于點G,垂足為F,連接OC.
(1)求證:∠ACB=∠G;
(2)如圖②,連接OB,若AB=AE,,求的值.
【答案】(1)證明見解析;(2).
【解析】
(1)連接CD,根據(jù)圓周角定理和垂直的定義可得結(jié)論;
(2)過O作OG⊥AB于G,設CF=x,則AF=2x.通過證得△COF≌△OAN(AAS),得到AN=OF,ON=CF=x.設OF=a,則OA=OC=2xa,根據(jù)勾股定理列方程得:(2xa)2=x2+a2,則a=x,代入面積公式可得結(jié)論.
(1)證明:如圖①,連接CD,
∵AD是⊙O的直徑,
∴∠ACD=90°.
∴∠ACB+∠BCD=90°.
∵AD⊥CG,
∴∠AFG=∠G+∠BAD=90°.
∵∠BAD=∠BCD,
∴∠ACB=∠G;
(2)解:如圖②,過點O作ON⊥AB于點N,連接CD,設CF=x,
∵tan∠CAF==,
∴AF=2x.
∵AB=AE,
∴∠ABE=∠AEB,
∵∠ABC=∠G+∠BCG,∠AEB=∠ACB+∠DAC,
∵∠ACB=∠G;
∴∠BCG=∠DAC,
∴=,
∵AD⊥CH,
∴=,
∴2=,
∴2∠CAD=∠BAD,
∵∠COF=2∠CAD,
∴∠COF=∠BAD,
∵OC=OA,∠OFC=∠ONA=90°,
∴△COF≌△OAN(AAS).
∴AN=OF,ON=CF=x.
設OF=a,則OA=OC=2x﹣a,在Rt△COF中,CO2=CF2+OF2,
∴(2x﹣a)2=x2+a2.
∴a=x.
∴OF=AN=x.
∵OA=OB,ON⊥AB,
∴AB=2AN=x.
∴.
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=ax2+bx+c經(jīng)過點A,點B,與y軸負半軸交于點C,且OC=OB,其中B點坐標為(3,0),對稱軸為直線x=.
(1)求拋物線的解析式;
(2)在x軸上方有一點P(m,n),連接PA后滿足∠PAB=∠CAB,記△PBC面積為S,求S與m的函數(shù)關(guān)系;
(3)在(2)的條件下,當點P恰好落在拋物上時,將直線BC上下平移,平移后的直線y=x+t與拋物線交于C',B'兩點(C'在B'的左側(cè)),若以點C'、B'、P為頂點三角形是直角三角形,求t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩人沿相同的路線由地到地勻速前進,、兩地之間的路程為20千米,他們距地的距離(單位:千米)與乙出發(fā)后的時間(單位:小時)的函數(shù)圖象如圖所示.根據(jù)圖象信息,回答下列問題:
(1)甲的速度是 千米/小時,乙的速度是 千米/小時;
(2)是甲先出發(fā)還是乙先出發(fā)?先出發(fā)幾小時?
(3)若乙到達地休息30分鐘之后,立即以原來的速度返回地,則在乙出發(fā)幾小時以后兩人再次相遇?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線:與軸交于,兩點,與軸交于點,其對稱軸與軸交于點.
(1)求拋物線的表達式;
(2)如圖1,若動點在對稱軸上,當的周長最小時,求點的坐標;
(3)如圖2,設點關(guān)于對稱軸的對稱點為,是線段上的一個動點,若,求直線的表達式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線,頂點為點,拋物線與軸交于、點(點在點的左側(cè)),與軸交于點.
(1)若拋物線經(jīng)過點時,求此時拋物線的解析式;
(2)直線與拋物線交于、兩點,若,請求出的取值范圍;
(3)如圖,若直線交軸于點,請求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為6,點E是AD的中點,連接BE、CE,CE與BD相交于點H,連接AH,交BE于點G,則GH的長為__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線交x軸、y軸分別于點A、點F,并與反比例函數(shù)的圖像交于B、C兩點(點B在點C的左側(cè)),以OA為直徑作半圓,圓心為P,過點B作x軸的垂線,垂足為E,并與半圓P交于點D.
(1)若B、C的橫坐標分別為x1、x2,且x2x15,求m的值;
(2)判斷線段DE的長是否隨m的改變而改變,若不隨m的改變而改變,請求出DE的長;若隨m的改變而改變,請說明理由;
(3)記點C關(guān)于直線DE的對稱點為C′,當四邊形CDC′E為菱形時,直接寫出C的坐標和m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“低碳生活,綠色出行”是我們倡導的一種生活方式,有關(guān)部門抽樣調(diào)查了某單位員工上下班的交通方式,繪制了兩幅統(tǒng)計圖:
(1)樣本中的總?cè)藬?shù)為 人;扇形統(tǒng)計十圖中“騎自行車”所在扇形的圓心角為 度;
(2)補全條形統(tǒng)計圖;
(3)該單位共有1000人,積極踐行這種生活方式,越來越多的人上下班由開私家車改為騎自行車.若步行,坐公交車上下班的人數(shù)保持不變,問原來開私家車的人中至少有多少人改為騎自行車,才能使騎自行車的人數(shù)不低于開私家車的人數(shù)?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】近兩年購物的支付方式日益增多,某數(shù)學興趣小組就此進行了抽樣調(diào)查,調(diào)查結(jié)果顯示,支付方式有:A微信.B支付寶.C銀行卡.D其他.該小組選取了某一超市一天之內(nèi)購買者的支付方式進行統(tǒng)計,得到如下兩幅不完整的統(tǒng)計圖.
請你根據(jù)統(tǒng)計圖提供的信息,解答下列問題:
(1)本次調(diào)查中,一共調(diào)查了多少名購買者?
(2)補全條形統(tǒng)計圖:“A微信”支付方式所在扇形的圓心角為 度;
(3)若該超市這一天內(nèi)有2000名購買者,請你估計B種支付方式的購買者有多少人?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com