分析 (1)如圖1,根據(jù)ASA證明△CBG≌△ACD,得BG=DC;
(2)如圖2,由(1)得:△CBG≌△ACD,得∠CDE=∠G,再證明△BDF≌△BGF得出結(jié)論;
(3)如圖3,作輔助線,分別證明△ACD≌△AFD和△ACN≌△CBF,得DN=2DE,AN=CF=2CE,可以得出結(jié)論.
解答 解:(1)BG=DC,理由是:
如圖1,∵∠ACB=90°,
∴∠BCG+∠GCA=90°,
∵CF⊥AD,
∴∠CEA=90°,
∴∠GCA+∠CAD=90°,
∴∠BCG=∠CAD,
∵∠ACB=∠CBG=90°,AC=BC,
∴△CBG≌△ACD(ASA),
∴BG=DC;
(2)如圖2,由(1)得:△CBG≌△ACD,
∴∠CDE=∠G,
∵D是BC的中點,
∴BD=DC,
∵BG=DC,
∴BG=BD,
∵∠ACB=90°,AC=BC,
∴∠CBA=45°,
∵∠CBG=90°,
∴∠GBA=45°,
∴∠GBA=∠CBA=45°,
∵BF=BF,
∴△BDF≌△BGF(SAS),
∴∠BDF=∠G,
∴∠BDF=∠CDE;
(3)AD=2DE+2CE,理由是:
如圖3,過C作CM⊥AB于M,交AD于N,
∵AC=BC,∠ACB=90°,
∴∠BCM=∠ACM=45°,
∵點C和點F關(guān)于直線AD成軸對稱,
∴AD是CF的中垂線,
∴CE=EF,CD=DF,AC=AF,
∵AD=AD,
∴△ACD≌△AFD,
∴∠DFA=∠ACB=90°,
∵∠CBA=45°,
∴△DBF是等腰直角三角形,
∴BF=DF,
∴BF=DF=CD,
∵AC=AF,∠BAC=45°,
∴∠ACF=∠CFA=67.5°,∠CAE=∠FAE=22.5°,
∴∠BCG=90°-67.5°=22.5°,
∴∠ECN=45°-22.5°=22.5°,
∴∠ECN=∠BCG,
∴△DCE≌△NCE,
∴DC=CN,DE=EN,
∴CN=BF,
∵∠CAD=∠BCG=22.5°,
∵AC=BC,
∴△ACN≌△CBF,
∴CF=AN=2CE,
∴AD=DE+EN+AN=2DE+CF=2DE+2CE.
點評 本題是三角形的綜合題,難度適中,考查了等腰直角三角形的性質(zhì)、全等三角形的性質(zhì)和判定,根據(jù)全等三角形的對應邊相等和對應角相等解決問題,對于線段的和的問題,也是利用全等三角形將邊平移到同一條直線上,得也相應的關(guān)系.
科目:初中數(shù)學 來源: 題型:解答題
員工 | 經(jīng)理 | 副經(jīng)理 | 職員A | 職員B | 職員C | 職員D | 職員E | 職員F | 職員G |
月工資/元 | 12000 | 8000 | 3200 | 2600 | 2400 | 2200 | 2200 | 2200 | 1200 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com