【題目】如圖,在△ABC 中,∠ACB=90°,AC=BC,AE 是 BC 邊的中線,過點C 作 CF⊥AE,垂足為點 F,過點 B 作 BD⊥BC 交 CF 的延長線于點 D.
(1)試證明:AE=CD;
(2)若 AC=12cm,求線段 BD 的長度.
【答案】(1)證明見解析(2)BD=6cm.
【解析】
(1)證兩條線段相等,通常用全等,本題中的AE和CD分別在三角形AEC和三角形CDB中,在這兩個三角形中,已經(jīng)有一組邊相等,一組角相等了,因此只需再找一組角即可利用角角邊進行解答;
(2)由(1)得BD=EC=BC=AC,且AC=12cm,即可求出BD的長.
(1)∵DB⊥BC,CF⊥AE,
∴∠DCB+∠D=∠DCB+∠AEC=90°,
∴∠D=∠AEC,
又∵∠DBC=∠ECA=90°,
且BC=CA,
∴△DBC≌△ECA(AAS),
∴AE=CD;
(2)因為△ACE ≌△CBD,所以BD =CE,
因為CE=BC=AC=×12=6cm,
所以BD =6cm.
科目:初中數(shù)學 來源: 題型:
【題目】一、閱讀理解:
在△ABC中,BC=a,CA=b,AB=c;
(1)若∠C為直角,則a2+b2=c2;
(2)若∠C為銳角,則a2+b2與c2的關(guān)系為:a2+b2>c2;
(3)若∠C為鈍角,試推導a2+b2與c2的關(guān)系.
二、探究問題:在△ABC中,BC=a=3,CA=b=4,AB=c,若△ABC是鈍角三角形,求第三邊c的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=x+m的圖象與反比例函數(shù)y= 的圖象交于A,B兩點,且與x軸交于點C,點A的坐標為(2,1).
(1)求m及k的值;
(2)求點C的坐標,并結(jié)合圖象寫出不等式組0<x+m≤ 的解集.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線經(jīng)過原點O,頂點為A(1,1),且與直線y=x﹣2交于B,C兩點.
(1)求拋物線的解析式及點C的坐標;
(2)求證:△ABC是直角三角形;
(3)若點N為x軸上的一個動點,過點N作MN⊥x軸與拋物線交于點M,則是否存在以O,M,N為頂點的三角形與△ABC相似?若存在,請求出點N的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點O為坐標原點,直線l與拋物線y=mx2+nx相交于A(1,3 ),B(4,0)兩點.
(1)求出拋物線的解析式;
(2)在坐標軸上是否存在點D,使得△ABD是以線段AB為斜邊的直角三角形?若存在,求出點D的坐標;若不存在,說明理由;
(3)點P是線段AB上一動點,(點P不與點A、B重合),過點P作PM∥OA,交第一象限內(nèi)的拋物線于點M,過點M作MC⊥x軸于點C,交AB于點N,若△BCN、△PMN的面積S△BCN、S△PMN滿足S△BCN=2S△PMN , 求出 的值,并求出此時點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在如圖所示的網(wǎng)格中有四條線段AB、CD、EF、GH(線段端點在格點上),
⑴選取其中三條線段,使得這三條線段能圍成一個直角三角形.
答:選取的三條線段為 .
⑵只變動其中兩條線段的位置,在原圖中畫出一個滿足上題的直角三角形(頂點仍在格點,并標上必要的字母).
答:畫出的直角三角形為△ .
⑶所畫直角三角形的面積為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點P、Q分別是邊長為4cm的等邊△ABC邊AB、BC上的動點,點P從頂點A,點Q從頂點B同時出發(fā),且速度都為1cm/s,連接AQ、CP交于點M,下面四個結(jié)論:①BP=CM;②△ABQ≌△CAP;③∠CMQ的度數(shù)不變,始終等于60°;④當?shù)?/span>秒或第秒時,△PBQ為直角三角形,正確的有幾個 ( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠C=Rt∠,AB=5cm,BC=3cm,若動點P從點C開始,按C→A→B→C的路徑運動,且速度為每秒1cm,設出發(fā)的時間為t秒.
(1)出發(fā)2秒后,求△ABP的周長.
(2)問t滿足什么條件時,△BCP為直角三角形?
(3)另有一點Q,從點C開始,按C→B→A→C的路徑運動,且速度為每秒2cm,若P、Q兩點同時出發(fā),當P、Q中有一點到達終點時,另一點也停止運動.當t為何值時,直線PQ把△ABC的周長分成相等的兩部分?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,設正方體ABCD-A1B1C1D1的棱長為1,黑、白兩個甲殼蟲同時從點A出發(fā),以相同的速度分別沿棱向前爬行,黑甲殼蟲爬行的路線是AA1→A1D1→……,白甲殼蟲爬行的路線是AB→BB1→……,并且都遵循如下規(guī)則:所爬行的第n+2與第n條棱所在的直線必須是既不平行也不相交(其中n是正整數(shù)).那么當黑、白兩個甲殼蟲各爬行完第2018條棱分別停止在所到的正方體頂點處時,它們之間的距離是( )
A. 0 B. C. D. 1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com