【題目】如圖,在中,,點(diǎn)在邊上且點(diǎn)到點(diǎn)的距離與點(diǎn)到點(diǎn)的距離相等.
(1)利用尺規(guī)作圖作出點(diǎn),不寫作法但保留作圖痕跡.
(2)連接,若,求∠B的度數(shù).
【答案】(1)見解析;(2)72°
【解析】
(1)作出線段AC的垂直平分線即可;
(2)根據(jù)等腰三角形性質(zhì)得出∠CDB=∠B=∠ACB以及∠A=∠ACD,然后利用等量代換進(jìn)一步得出∠B=∠ACB =2∠A,最后根據(jù)三角形內(nèi)角和為180°列方程求出∠A的度數(shù)然后求出∠B即可.
(1)點(diǎn)D如圖所示:
(2)∵CD=CB,AB=AC,
∴∠CDB=∠B=∠ACB,
又∵DA=DC,
∴∠A=∠ACD,
∴∠CDB=∠A+∠ACD=2∠A,
∴∠B=∠ACB =2∠A,
又∵∠B+∠A+∠ACB=180°,
∴2∠A+∠A+2∠A=180°,
∴∠A=36°,
∴∠B=72°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】規(guī)定:如果一個(gè)三角形的三個(gè)角分別等于另一個(gè)三角形的三個(gè)角,那么稱這兩個(gè)三角形互為“等角三角形”.從三角形(不是等腰三角形)一個(gè)頂點(diǎn)引出一條射線與對(duì)邊相交,頂點(diǎn)與交點(diǎn)之間的線段把這個(gè)三角形分割成兩個(gè)小三角形,如果分得的兩個(gè)小三角形中一個(gè)為等腰三角形,另一個(gè)與原來(lái)三角形是“等角三角形”,我們把這條線段叫做這個(gè)三角形的“等角分割線”.
(1)如圖1,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,請(qǐng)寫出圖中兩對(duì)“等角三角形”.
(2)如圖2,在△ABC中,CD為角平分線,∠A=40°,∠B=60°。求證:CD為△ABC的等角分割線.
(3)在△ABC中,∠A=42°,CD是△ABC的等角分割線,若△ACD是等腰三角形,請(qǐng)直接寫出∠ACB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,E為邊BC上的點(diǎn),且AB=AE,D為線段BE的中點(diǎn),連接AD,過(guò)點(diǎn)E作EF⊥AE,過(guò)點(diǎn)A作AF∥BC,且AF,EF相交于點(diǎn)F.
(1)求證:∠B=∠DAC.
(2)求證:AC=EF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,中,,,BD、CD分別平分∠ABC,∠ACB,過(guò)點(diǎn)D作直線平行于BC,分別交AB、AC于E、F,則的周長(zhǎng)為 ( )
A.12B.13C.14D.15
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】ΔABC、ΔCDE都是等邊三角形,AD、BE相交于點(diǎn)O,點(diǎn)M、點(diǎn)N分別是線段AD、BE的中點(diǎn).
(1)證明: AD=BE.(2)求∠DOE的角度。(3)證明:ΔMNC是等邊三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,AB=2,∠BAD=60°,過(guò)點(diǎn)D作DE⊥AB于點(diǎn)E,DF⊥BC于點(diǎn)F.將∠EDF以點(diǎn)D為旋轉(zhuǎn)中心旋轉(zhuǎn),其兩邊DE′,DF′分別與直線AB,BC相交于點(diǎn)G,P,連接GP,當(dāng)△DGP的面積等于3時(shí),求旋轉(zhuǎn)角的大小并指明旋轉(zhuǎn)方向.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,△ABC、△DCE均為等邊三角形,當(dāng)B、C、E三點(diǎn)在同一條直線上時(shí),連接BD、AE交于點(diǎn)F,易證:△ACE≌△BCD.聰明的小明將△DCE繞點(diǎn)C旋轉(zhuǎn)的過(guò)程中發(fā)現(xiàn)了一些不變的結(jié)論,讓我們一起開啟小明的探索之旅!
(探究一)如圖2,當(dāng)B、C、E三點(diǎn)不在同一條直線上時(shí),小明發(fā)現(xiàn)∠BFE的大小沒有發(fā)生變化,請(qǐng)你幫他求出∠BFE的度數(shù).
(探究二)閱讀材料:在平時(shí)的練習(xí)中,我們?cè)骄康玫竭@樣一個(gè)正確的結(jié)論:兩個(gè)全等三角形的對(duì)應(yīng)邊上的高相等.例如:如圖3,如果△ABC≌△A’B’C’,AD、A’D’分別是△ABC、△A’B’C’的邊BC、B’C’上的高,那么容易證明AD=A’D’.小明帶著這樣的思考又有了新的發(fā)現(xiàn):如圖4,若連接CF,則CF平分∠BFE,請(qǐng)你幫他說(shuō)明理由.
(探究三)在探究二的基礎(chǔ)上,小明又進(jìn)一步研究發(fā)現(xiàn),線段AF、BF、CF之間還存在一定的數(shù)量關(guān)系,請(qǐng)你寫出它們之間的關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程(x﹣3)(x﹣2)=|m|.
(1)求證:對(duì)于任意實(shí)數(shù)m,方程總有兩個(gè)不相等的實(shí)數(shù)根;
(2)若方程的一個(gè)根是1,求m的值及方程的另一個(gè)根.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com