【題目】如圖,將ABCD的AD邊延長至點E,使DE=AD,連接CE,F是BC邊的中點,連接FD.
(1)求證:四邊形CEDF是平行四邊形;
(2)若AB=3,AD=4,∠A=60°,求CE的長.
【答案】(1)證明見解析;(2)CE=.
【解析】
(1)利用平行四邊形的性質得出AD=BC,AD∥BC,進而利用已知得出DE=FC,DE∥FC,進而得出答案;
(2)首先過點D作DN⊥BC于點N,再利用平行四邊形的性質結合勾股定理得出DF的長,進而得出答案.
(1)∵四邊形ABCD是平行四邊形,
∴AD=BC,AD∥BC,
∵DE=AD,F是BC邊的中點,
∴DE=FC,DE∥FC,
∴四邊形CEDF是平行四邊形;
(2)過點D作DN⊥BC于點N,
∵四邊形ABCD是平行四邊形,∠A=60°,
∴∠BCD=∠A=60°,
∵AB=3,AD=4,
∴FC=2,NC=DC=,DN=,
∴FN=,則DF=EC==.
科目:初中數學 來源: 題型:
【題目】某中學為打造書香校園,計劃購進甲、乙兩種規(guī)格的書柜放置新購進的圖書,調查發(fā)現(xiàn),若購買甲種書柜3個、乙種書柜2個,共需資金1020元;若購買甲種書柜4個,乙種書柜3個,共需資金1440元.
(1)甲、乙兩種書柜每個的價格分別是多少元?
(2)若該校計劃購進這兩種規(guī)格的書柜共20個,其中乙種書柜的數量不少于甲種書柜的數量,學校至多能夠提供資金4320元,請設計幾種購買方案供這個學校選擇.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,平面上有線段AB和點C,按下列語句要求畫圖與填空:
(1)作射線AC;
(2)用尺規(guī)在線段AB的延長線上截取BD=AC;
(3)連接BC
(4)有一只螞蟻想從點A爬到點B,它應該沿路徑(填序號)______(①AB,②)爬行最近,這樣爬行所運用到的數學原理是_____________________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀思考
我們知道,在數軸上|a|表示數a所對應的點到原點的距離,這是絕對值的幾何意義,由此我們可進一步地來研究數軸上任意兩個點之間的距離,一般地,如果數軸上兩點A、B 對立的數用a,b表示,那么這兩個點之間的距離AB=|a﹣b|.也可以用兩點中右邊的點所表示數的減去左邊的點所表示的數來計算,例如:數軸上P,Q兩點表示的數分別是﹣1和2,那么P,Q兩點之間的距離就是 PQ=2﹣(﹣1)=3.
啟發(fā)應用
如圖,點A在數軸上對應的數為a,點B對應的數為b,且a、b滿足|a+3|+(b﹣2)2=0
(1)求線段AB的長;
(2)如圖,點C在數軸上對應的數為x,且x是方程2x+1=x﹣8的解,
①求線段BC的長;
②在數軸上是否存在點P使PA+PB=BC?若存在,直接寫出點P對應的數:若不存在,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△AOB中,∠ABO=90°,OB=4,AB=8,反比例函數y=在第一象限內的圖象分別交OA,AB于點C和點D,且△BOD的面積S△BOD=4.
(1)求反比例函數解析式;
(2)求點C的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列變形中:
①由方程=2去分母,得x﹣12=10;
②由方程x=兩邊同除以,得x=1;
③由方程6x﹣4=x+4移項,得7x=0;
④由方程2﹣兩邊同乘以6,得12﹣x﹣5=3(x+3).
錯誤變形的個數是( 。﹤.
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知邊長為3的正方形ABCD中,點E在射線BC上,且BE=2CE,連接AE交射線DC于點F,若△ABE沿直線AE翻折,點B落在點B1處.
(1)如圖1,若點E在線段BC上,求CF的長;
(2)求sin∠DAB1的值;
(3)如果題設中“BE=2CE”改為“=x”,其它條件都不變,試寫出△ABE翻折后與正方形ABCD公共部分的面積y與x的關系式及自變量x的取值范圍(只要寫出結論,不需寫出解題過程).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1直角三角板的直角頂點O在直線AB上,OC,OD是三角板的兩條直角邊,射線OE平分∠AOD.
(1)若∠COE=40°,則∠BOD= .
(2)若∠COE=α,求∠BOD(請用含α的代數式表示);
(3)當三角板繞O逆時針旋轉到圖2的位置時,其它條件不變,試猜測∠COE與∠BOD之間有怎樣的數量關系?并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】連接多邊形任意兩個不相鄰頂點的線段稱為多邊形的對角線.
(1)
對角線條數分別為 、 、 、 .
(2)n邊形可以有20條對角線嗎?如果可以,求邊數n的值;如果不可以,請說明理由.
(3)若一個n邊形的內角和為1800°,求它對角線的條數.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com