【題目】如圖,是等邊三角形,是中線,延長到點,使,連結(jié),下面給出的四個結(jié)論:①,②平分,③,④,其中正確的個數(shù)是(

A.1B.2C.3D.4

【答案】D

【解析】

因為△ABC是等邊三角形,又BDAC上的中線,所以有:AD=CD,∠ADB=CDB=90°(①正確),且∠ABD=CBD=30°(②正確),∠ACB=CDE+DEC=60°,又CD=CE,可得∠CDE=DEC=30°,所以就有,∠CBD=DEC,即DB=DE(③正確),∠BDE=CDB+CDE=120°(④正確);由此得出答案解決問題.

∵△ABC是等邊三角形,BDAC上的中線,
∴∠ADB=CDB=90°,BD平分∠ABC;
BDAC
∵∠ACB=CDE+DEC=60°,
CD=CE,
∴∠CDE=DEC=30°,
∴∠CBD=DEC
DB=DE.
BDE=CDB+CDE=120°
所以這四項都是正確的.
故選:D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知是兩個等腰直角三角形,.連接,的中點,連接、

(1)如圖,當(dāng)在同一直線上時,求證:

(2)如圖,當(dāng)時,求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】附加題:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2

的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一個長方體,它的長、寬、高分別為、、是這個長方體上兩個相對的頂點,點處有一只螞蟻,想到點處去吃可口的食物,則螞蟻沿著長方體表面爬行到點的最短路程為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,A為⊙O的弦EF上的一點,OB是和這條弦垂直的半徑,垂足為H,BA的延長線交⊙O于點C,過點C作⊙O的切線與EF的延長線相交于點D.

(1)求證:DA=DC;

(2)當(dāng)DF:EF=1:8,且DF=時,求ABAC的值;

(3)將圖1中的EF所在直線往上平行移動到⊙O外,如圖2的位置,使EF與OB,延長線垂直,垂足為H,A為EF上異于H的一點,且AH小于⊙O的半徑,AB的延長線交⊙O于C,過C作⊙O的切線交EF于D.試猜想DA=DC是否仍然成立?并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,ABAC,∠A=90°,BC=6,直線MNBC,且分別交邊AB,AC于點MN,已知直線MNABC分為面積相等的兩部分.如果將線段AM繞著點A旋轉(zhuǎn),使點M落在邊BC上的點D處,那么BD________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在同一平面直角坐標(biāo)系中,表示函數(shù)y=ax+by=的圖象可能是(  )

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某服裝店購進一批甲、乙兩種款型時尚T恤衫,甲種款型共用了7800元,乙種款型共用了6400元,甲種款型的件數(shù)是乙種款型件數(shù)的1.5倍,甲種款型每件的進價比乙種款型每件的進價少30元.

1)甲、乙兩種款型的T恤衫各購進多少件?

2)商店進價提高60%標(biāo)價銷售,銷售一段時間后,甲款型全部售完,乙款型剩余一半,商店決定對乙款型按標(biāo)價的五折降價銷售,很快全部售完,求售完 這批T恤衫商店共獲利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知⊙O的半徑為10,圓心O到弦AB的距離為5,則弦AB所對的圓周角的度數(shù)是( 。

A. 30° B. 60° C. 30°150° D. 60°120°

查看答案和解析>>

同步練習(xí)冊答案