【題目】如圖,在矩形ABCD中,O是對(duì)角線AC的中點(diǎn).將ABCD繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°.旋轉(zhuǎn)后的四邊形為A'B′C′D',點(diǎn)A,C,D,O的對(duì)應(yīng)點(diǎn)分別為A′,C',D',O’,若AB=8,BC=10,則線段CO’的長(zhǎng)為_____.
【答案】
【解析】
過(guò)點(diǎn)O′作O′M⊥BC于點(diǎn)M,利用旋轉(zhuǎn)的性質(zhì)及三角形中線的性質(zhì)可得MO′,BM的長(zhǎng)度,從而可得CM的長(zhǎng)度,在Rt△CO′M中,利用勾股定理即可求出答案.
解:過(guò)點(diǎn)O′作O′M⊥BC于點(diǎn)M,
∵將ABCD繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°到四邊形為A'B′C′D'位置,AB=8,BC=10,
∴BC′=BC=10,∠CBE=90°,BA′=AB=8,
∴O′M∥BC′,
∵O是對(duì)角線AC的中點(diǎn),
∴O′是A′C′的中點(diǎn),
∴MO′=BC′=5,BM=A′M=BA′=4,
∴CM=BC﹣BM=10﹣4=6,
在Rt△CO′M中,CO′=
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD中,點(diǎn)E、F、H分別是AB、BC、CD的中點(diǎn),CE、DF交于G,連接AG、HG.下列結(jié)論:①CE⊥DF;②AG=AD;③∠CHG=∠DAG;④HG=AD.其中正確的有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在□ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,AB=OB,E為AC上一點(diǎn),BE平分∠ABO,EF⊥BC于點(diǎn)F,∠CAD=45°,EF交BD于點(diǎn)P,BP=,則BC的長(zhǎng)為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,O、D分別為AB、AC上的點(diǎn),經(jīng)過(guò)A、D兩點(diǎn)的⊙O分別交于AB、AC于點(diǎn)E、F,且BC與⊙O相切于點(diǎn)D.
(1)求證:;
(2)當(dāng)AC=2,CD=1時(shí),求⊙O的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,BA=BC=20cm,AC=30cm,點(diǎn)P從A點(diǎn)出發(fā),沿著AB以每秒4cm的速度向B點(diǎn)運(yùn)動(dòng);同時(shí)點(diǎn)Q從C點(diǎn)出發(fā),沿CA以每秒3cm的速度向A點(diǎn)運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為x秒.
(1)當(dāng)CQ=10時(shí),求的值.
(2)當(dāng)x為何值時(shí),PQ∥BC;
(3)是否存在某一時(shí)刻,使△APQ∽△CQB?若存在,求出此時(shí)AP的長(zhǎng),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2013年四川自貢12分)將兩塊全等的三角板如圖①擺放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°.
(1)將圖①中的△A1B1C順時(shí)針旋轉(zhuǎn)45°得圖②,點(diǎn)P1是A1C與AB的交點(diǎn),點(diǎn)Q是A1B1與BC的交點(diǎn),求證:CP1=CQ;
(2)在圖②中,若AP1=2,則CQ等于多少?
(3)如圖③,在B1C上取一點(diǎn)E,連接BE、P1E,設(shè)BC=1,當(dāng)BE⊥P1B時(shí),求△P1BE面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠B=30°,以A為圓心,任意長(zhǎng)為半徑畫(huà)弧交AB于M、AC于N,再分別以M、N為圓心,大于MN的長(zhǎng)為半徑畫(huà)弧,兩弧交于點(diǎn)P,連接AP并延長(zhǎng)交BC于D,下列四個(gè)結(jié)論:
①AD是∠BAC的平分線;
②∠ADC=60°;
③點(diǎn)D在AB的中垂線上;
④S△ACD:S△ACB=1:3.
其中正確的有( 。
A. 只有①②③ B. 只有①②④ C. 只有①③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)是等邊三角形的邊,上的點(diǎn),且,交于點(diǎn),于點(diǎn),已知,,則等于( )
A.10B.12C.14D.16
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com