【題目】一個等腰三角形的底邊長為 5,一腰上中線把其周長分成的兩部分的差為 3,則這個等腰三角形的腰長為( )
A.2
B.8
C.2 或 8
D.10
【答案】B
【解析】∵BD為中線,AB=AC,BC=5,
∴AD=CD,
∵C△ABD=AB+BD+AD,C△CBD=BC+CD+BD,
①當C△ABD-C△CBD=3時,
∴AB+BD+AD-(BC+CD+BD)=3,
即AB-BC=3,
∴AB=3+5=8,
∴△ABC三邊長分別為:8,8,5,符合三角形三邊之間的關系,
②當C△CBD-C△ABD=3時,
∴BC+CD+BD-(AB+BD+AD)=3,
即BC-AB=3,
∴AB=5-3=2,
∴△ABC三邊長分別為:2,2,5,2+25,不符合三角形三邊之間的關系,
所以答案是:B.
【考點精析】根據題目的已知條件,利用等腰三角形的性質的相關知識可以得到問題的答案,需要掌握等腰三角形的兩個底角相等(簡稱:等邊對等角).
科目:初中數學 來源: 題型:
【題目】2016年10月1日,重慶四大景區(qū)共接待游客約518 000人,這個數可用科學記數法表示為( )
A.0.518×104
B.5.18×105
C.51.8×106
D.518×103
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】給出下列說法,其中正確的是( )
A. 兩條直線被第三條直線所截,同位角相等;
B. 平面內的一條直線和兩條平行線中的一條相交,則它與另一條也相交;
C. 相等的兩個角是對頂角;
D. 從直線外一點到這條直線的垂線段,叫做這點到直線的距離.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】張老師計劃到超市購買甲種文具100個,他到超市后發(fā)現還有乙種文具可供選擇.如果調整文具的購買品種,每減少購買1個甲種文具,需增加購買2個乙種文具.設購買x個甲種文具時,需購買y個乙種文具.
(1)①當減少購買1個甲種文具時,x= ,y= ;②求y與x之間的函數表達式.
(2)已知甲種文具每個5元,乙種文具每個3元,張老師購買這兩種文具共用去540元.甲、乙兩種文具各購買了多少個?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校舉辦了一次成語知識競賽,滿分10分,學生得分均為整數,成績達到6分及6分以上為合格,達到9分或10分為優(yōu)秀.這次競賽中甲、乙兩組學生成績分布的折線統(tǒng)計圖和成績統(tǒng)計分析表如圖所示.
(1)求出下列成績統(tǒng)計分析表中的值;
(2)小英同學說:“這次競賽我得了7分,在我們小組中排名屬中游略上!”觀察上面表格判斷,小英是甲、乙哪個組的學生;
(3)甲組同學說他們組的合格率、優(yōu)秀率均高于乙組,所以他們組的成績好于乙組,但乙組同學不同意甲組同學的說法,認為他們的成績要好于甲組.請你給出兩條支持乙組同學觀點的理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com