【題目】如圖,已知ABC中,∠C=90°,AC=BC= ,將ABC繞點A順時針方向旋轉(zhuǎn)60°AB′C′的位置,連接C′B

1)請你在圖中把圖補畫完整;

2)求C′B的長.

【答案】1)見解析;(2

【解析】

1)根據(jù)題意作出圖形即可;
2)連接BB′,延長BC′AB′于點M;根據(jù)全等三角形的性質(zhì)得到得到∠MBB=MBA=30°;求出BMC′M的長,即可解決問題.

解:(1)如圖1所示,
2)如圖2,連接BB′,延長BC′AB′于點M
由題意得:∠BAB=60°,BA=B′A,
∴△ABB為等邊三角形,
∴∠ABB=60°AB=B′B;
在△ABC與△BBC中,

,

∴△ABC≌△BBCSSS),
∴∠MBB=MBA=30°,
BMAB,且AM=B′M
由題意得:AB2=4,
AB=AB=2,AM=1,
CM=AB′=1;由勾股定理可求:BM=,

CB=-1.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,△ABC的頂點坐標分別是A0,1),B1,3),C4,3).

1)將△ABC平移得到△A1B1C1,且C1的坐標是(0,﹣1),畫出△A1B1C1;

2)將△ABC繞點A逆時針旋轉(zhuǎn)90°得到△A2B2C2,畫出△A2B2C2

3)小娟發(fā)現(xiàn)△A1B1C1繞點P旋轉(zhuǎn)也可以得到△A2B2C2,請直接寫出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=﹣x+m與拋物線yax2+bx都經(jīng)過點A60),點B,過BBH垂直x軸于H,OA3OH.直線OC與拋物線AB段交于點C

1)求拋物線的解析式;

2)當點C的縱坐標是時,求直線OC與直線AB的交點D的坐標;

3)在(2)的條件下將OBH沿BA方向平移到MPN,頂點P始終在線段AB上,求MPNOAC公共部分面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,點EBC邊上的中點,G為線段CD上一動點,連接BG,交AE于點F,若m+1,則的值為__

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,對角線AC、BD相交于點O,EOC上動點(與點O不重合),作AFBE,垂足為G,交BCF,交B0H,連接OG,CC.

(1)求證:AH=BE;

(2)試探究:∠AGO的度數(shù)是否為定值?請說明理由;

(3)OGCG,BG=,求OGC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某無人機興趣小組在操場上開展活動(如圖),此時無人機在離地面30米的D處,無人機測得操控者A的俯角為37°,測得點C處的俯角為45°.又經(jīng)過人工測量操控者A和教學樓BC距離為57米,求教學樓BC的高度.(注:點A,B,C,D都在同一平面上.參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80tan37°≈0.75

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,面積為6的菱形AOBC的兩點A,B在反比例函數(shù)x>0)的圖象上,則點C的坐標為___________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,ADBCABBC,點P是邊AD上一動點,將ABP沿BP折疊得到BEP,連接DE,CE,已知AB4,AD3BC6,則CDE面積的最小值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在一張矩形紙片中,對角線,點分別是的中點,現(xiàn)將這張紙片折疊,使點落在上的點處,折痕為,若的延長線恰好經(jīng)過點,則點到對角線的距離為( .

A.B.C.D.

查看答案和解析>>

同步練習冊答案