【題目】實(shí)驗(yàn)證明,平面鏡反射光線的規(guī)律是:照射到平面鏡上的光線和被反射出的光線與平面鏡所夾的銳角相等.

如圖,一束光線MA照射到平面鏡CE上,被CE反射到平面鏡CF上,又被CF反射.已知被CF反射出的光線BN與光線MA平行.若∠1=35°,則∠2= ,∠3= ;若∠1=50°,∠3=

2)由(1)猜想:當(dāng)兩平面鏡CECF的夾角∠3為多少度時,可以使任何射到平面鏡CE上的光線MA,經(jīng)過平面鏡CE,CF的兩次反射后,入射光線MA與反射光線BN平行,請你寫出推理過程.

【答案】170°,90°,90°;(2)猜想:當(dāng)兩平面鏡CE,CF的夾角∠390°時,可以使任何射到平面鏡CE上的光線MA,經(jīng)過平面鏡CECF的兩次反射后,入射光線MA與反射光線BN平行.理由見解析.

【解析】

1)根據(jù)平行線的性質(zhì)和三角形內(nèi)角和,以及入射角等于反射角,可以求得∠2和∠3的度數(shù);

2)先寫出∠3等于多少度,然后根據(jù)題意和圖形結(jié)合第(1)問的提示思路,即可寫出推理過程.

解:(1)∵AMBN,

∴∠MAB+2=180°,

∵∠MAB+1+BAC=180°,∠1=BAC,∠1=35°,

∴∠2=21=70°,

∵∠2+ABC+NBF=180°,∠ABC=NBF,

∴∠ABC=55°,

∴∠3=180°-BAC-ABC=90°;

當(dāng)∠1=50°時, 同理可得,∠2=100°,∠ABC=40°,∠BAC=1=50°,

則∠3=180°-BAC-ABC=90°;

故答案為:70°,90°,90°;

2)猜想:當(dāng)兩平面鏡CE,CF的夾角∠390°時,可以使任何射到平面鏡CE上的光線MA,經(jīng)過平面鏡CECF的兩次反射后,入射光線MA與反射光線BN平行.

理由:∵∠3=90°,

∴∠BAC+ABC=90°,

∵∠1=BAC,∠ABC=NBF

∴∠BAC+1+ABC+NBF=180°,

∴∠MAB+2=180°,

MABN

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一袋中裝有形狀大小都相同的四個小球,每個小球上各標(biāo)有一個數(shù)字,分別是1,4,7,8.現(xiàn)規(guī)定從袋中任取一個小球,對應(yīng)的數(shù)字作為一個兩位數(shù)的個位數(shù);然后將小球放回袋中并攪拌均勻,再任取一個小球,對應(yīng)的數(shù)字作為這個兩位數(shù)的十位數(shù).
(1)寫出按上述規(guī)定得到所有可能的兩位數(shù);
(2)從這些兩位數(shù)中任取一個,求其算術(shù)平方根大于4且小于7的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲有存款600元,乙有存款2000元,從本月開始,他們進(jìn)行零存整取儲蓄,甲每月存款500元,乙每月存款200元.

1)列出甲、乙的存款額y1、y2(元)與存款月數(shù)x(月)之間的函數(shù)關(guān)系式,畫出函數(shù)圖象.

2)請問到第幾個月,甲的存款額超過乙的存款額?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店第一次用300元購進(jìn)筆記本若干,第二次又用300元購進(jìn)該款筆記本,但這次每本的進(jìn)價是第一次進(jìn)價的 倍,購進(jìn)數(shù)量比第一次少了25本.
(1)求第一次每本筆記本的進(jìn)價是多少元?
(2)若要求這兩次購進(jìn)的筆記本按同一價格全部銷售完畢后獲利不低于450元,問每本筆記本的售價至少是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】x滿足(x4) (x9)6,求(x4)2+(x9)2的值.

解:設(shè)x4a,x9b,則(x4)(x9)ab6ab(x4)(x9)5,

(x4)2+(x9)2a2+b2(ab)22ab522×637

請仿照上面的方法求解下面問題:

(1)x滿足(x2)(x5)10,求(x2)2 + (x5)2的值

(2)已知正方形ABCD的邊長為x,E,F分別是ADDC上的點(diǎn),且AE1,CF3,長方形EMFD的面積是15,分別以MFDF作正方形,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知分式A=.

(1) 化簡這個分式;

(2) 當(dāng)a2時,把分式A化簡結(jié)果的分子與分母同時加上3后得到分式B,問:分式B的值較原來分式A的值是變大了還是變小了?試說明理由.

(3) A的值是整數(shù),且a也為整數(shù),求出符合條件的所有a值的和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1所示,一次函數(shù)y=kx+b的圖象與反比例函數(shù)的圖象交于, 兩點(diǎn).

1)求一次函數(shù)和反比例函數(shù)的解析式;

2)設(shè)點(diǎn)是反比例函數(shù)圖象上兩點(diǎn),,求的值;

3)若Mx1y1)和Nx2,y2)兩點(diǎn)在直線AB上,如圖2所示,過M、N兩點(diǎn)分別作y軸的平行線交雙曲線于E、F,已知﹣3x10x21,請?zhí)骄慨?dāng)x1、x2滿足什么關(guān)系時,MNEF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC 是等邊三角形,P BC 上任意一點(diǎn),PDAB,PEAC,連接 DE.記ADE 的周長為,四邊形 BDEC 的周長為,則的大小關(guān)系是( )

A. B. C. D. 無法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某移動通信公司推出了如下兩種移動電話計(jì)費(fèi)方式,

月使用費(fèi)/

主叫限定時間/分鐘

主叫超時費(fèi)(元/分鐘)

方式一

30

600

0.20

方式二

50

600

0.25

說明:月使用費(fèi)固定收取,主叫不超過限定時間不再收費(fèi),超過部分加收超時費(fèi).例如,方式一每月固定交費(fèi)30元,當(dāng)主叫計(jì)時不超過300分鐘不再額外收費(fèi),超過300分鐘時,超過部分每分鐘加收0.20元(不足1分鐘按1分鐘計(jì)算)

1)請根據(jù)題意完成如表的填空;

月主叫時間500分鐘

月主叫時間800分鐘

方式一收費(fèi)/

   

130

方式二收費(fèi)/

50

   

2)設(shè)某月主叫時間為t(分鐘),方式一、方式二兩種計(jì)費(fèi)方式的費(fèi)用分別為y1(元),y2(元),分別寫出兩種計(jì)費(fèi)方式中主叫時間t(分鐘)與費(fèi)用為y1(元),y2(元)的函數(shù)關(guān)系式;

3)請計(jì)算說明選擇哪種計(jì)費(fèi)方式更省錢.

查看答案和解析>>

同步練習(xí)冊答案