幾何圖形包括(    )圖形和(    )圖形;長方體、正方體、球、圓柱、圓錐等都是(    ),此外,棱柱和棱錐也是常見的(    );對于一些立體圖形的問題,常把它們轉化成(    )圖形來研究和處理。
立體,平面;立體圖形;立體圖形;平面
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

我們所學的幾何知識可以理解為對“構圖”的研究:根據(jù)給定的(或構造的)幾何圖形提出相關的概念和問題(或者根據(jù)問題構造圖形),并加以研究.
例如:在平面上根據(jù)兩條直線的各種構圖,可以提出“兩條直線平行”、“兩條直線相交”的概念;若增加第三條直線,則可以提出并研究“兩條直線平行的判定和性質”等問題(包括研究的思想和方法).
請你用上面的思想和方法對下面關于圓的問題進行研究:
(1)如圖1,在圓O所在平面上,放置一條直線m(m和圓O分別交于點A、B),根據(jù)這個圖形可以提出的概念或問題有哪些?(直接寫出兩個即可)
(2)如圖2,在圓O所在平面上,請你放置與圓O都相交且不同時經(jīng)過圓心的兩條直線m和n(m與圓O分別交于點A、B,n與圓O分別交于點C、D).請你根據(jù)所構造的圖形提出一個結論,并證明之;
(3)如圖3,其中AB是圓O的直徑,AC是弦,D是
ABC
的中點,弦DE精英家教網(wǎng)⊥AB于點F.請找出點C和點E重合的條件,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1)如圖1,AB⊥BD于B,DE⊥BD于D,已知AB=CD,BC=ED.求∠ACE的度數(shù).
(2)如圖2,△ABE與△CDA中,∠C=∠CAE=90°,AB=CD,AE=AC.問這兩個直角三角形的邊AD與EB之間有何關系?并說明理由(幾何圖形的線段關系包括大小與位置關系)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,由若干盆花擺成圖案,每個點表示一盆花,幾何圖形的每條邊上(包括兩個頂點)都擺有n(n≥3)盆花,每個圖案中花盆總數(shù)為S,按照圖中的規(guī)律可以推斷S與n(n≥3)的關系是
n(n-1)
n(n-1)

查看答案和解析>>

科目:初中數(shù)學 來源:廣東省中考真題 題型:解答題

我們所學的幾何知識可以理解為對“構圖”的研究:根據(jù)給定的(或構造的)幾何圖形提出相關的概念和問題(或者根據(jù)問題構造圖形),并加以研究。
例如:在平面上根據(jù)兩條直線的各種構圖,可以提出“兩條直線平行”、“兩條直線相交”的概念;若增加第三條直線,則可以提出并研究“兩條直線平行的判定和性質”等問題(包括研究的思想和方法)。
請你用上面的思想和方法對下面關于圓的問題進行研究:
(1)如圖1,在圓O所在平面上,放置一條直線m(m和圓O分別交于點A、B),根據(jù)這個圖形可以提出的概念或問題有哪些?(直接寫出兩個即可)
(2)如圖2,在圓O所在平面上,請你放置與圓O都相交且不同時經(jīng)過圓心的兩條直線m和n(m與圓O分別交于點A、B,n與圓O分別交于點C、D),請你根據(jù)所構造的圖形提出一個結論,并證明之;
(3)如圖3,其中AB是圓O的直徑,AC是弦,D是的中點,弦DE⊥AB于點F,請找出點C和點E重合的條件,并說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源:第3章《圓》中考題集(23):3.3 圓周角(解析版) 題型:解答題

我們所學的幾何知識可以理解為對“構圖”的研究:根據(jù)給定的(或構造的)幾何圖形提出相關的概念和問題(或者根據(jù)問題構造圖形),并加以研究.
例如:在平面上根據(jù)兩條直線的各種構圖,可以提出“兩條直線平行”、“兩條直線相交”的概念;若增加第三條直線,則可以提出并研究“兩條直線平行的判定和性質”等問題(包括研究的思想和方法).
請你用上面的思想和方法對下面關于圓的問題進行研究:
(1)如圖1,在圓O所在平面上,放置一條直線m(m和圓O分別交于點A、B),根據(jù)這個圖形可以提出的概念或問題有哪些?(直接寫出兩個即可)
(2)如圖2,在圓O所在平面上,請你放置與圓O都相交且不同時經(jīng)過圓心的兩條直線m和n(m與圓O分別交于點A、B,n與圓O分別交于點C、D).請你根據(jù)所構造的圖形提出一個結論,并證明之;
(3)如圖3,其中AB是圓O的直徑,AC是弦,D是的中點,弦DE⊥AB于點F.請找出點C和點E重合的條件,并說明理由.

查看答案和解析>>

同步練習冊答案