【題目】如圖,已知等邊△ABC,請(qǐng)用直尺(不帶刻度)和圓規(guī),按下列要求作圖(不要求寫作法,但要保留作圖痕跡):
(1)作△ABC的外心O;
(2)設(shè)D是AB邊上一點(diǎn),在圖中作出一個(gè)正六邊形DEFGHI,使點(diǎn)F,點(diǎn)H分別在邊BC和AC上.
【答案】
(1)如圖所示:點(diǎn)O即為所求.
(2)如圖所示:六邊形DEFGHI即為所求正六邊形.
【解析】(1)根據(jù)垂直平分線的作法作出AB,AC的垂直平分線交于點(diǎn)O即為所求;(2)過D點(diǎn)作DI∥BC交AC于I,分別以D,I為圓心,DI長(zhǎng)為半徑作圓弧交AB于E,交AC于H,過E點(diǎn)作EF∥AC交BC于F,過H點(diǎn)作HG∥AB交BC于G,六邊形DEFGHI即為所求正六邊形.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用等邊三角形的性質(zhì)和三角形的外接圓與外心的相關(guān)知識(shí)可以得到問題的答案,需要掌握等邊三角形的三個(gè)角都相等并且每個(gè)角都是60°;過三角形的三個(gè)頂點(diǎn)的圓叫做三角形的外接圓,其圓心叫做三角形的外心.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,CD⊥AB于點(diǎn)D,⊙D經(jīng)過點(diǎn)B,與BC交于點(diǎn)E,與AB交與點(diǎn)F.已知tanA= ,cot∠ABC= ,AD=8.
(1)求⊙D的半徑;
(2)求CE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們定義:有一組對(duì)角相等而另一組對(duì)角不相等的凸四邊形叫做等對(duì)角四邊形.請(qǐng)解決下列問題:
(1)已知:如圖1,四邊形ABCD是等對(duì)角四邊形,∠A≠∠C,∠A=70°,∠B=75°,則∠C=°,∠D=°
(2)在探究等對(duì)角四邊形性質(zhì)時(shí): 小紅畫了一個(gè)如圖2所示的等對(duì)角四邊形ABCD,其中,∠ABC=∠ADC,AB=AD,此時(shí)她發(fā)現(xiàn)CB=CD成立,請(qǐng)你證明該結(jié)論;
(3)圖①、圖②均為4×4的正方形網(wǎng)格,線段AB、BC的端點(diǎn)均在網(wǎng)點(diǎn)上.按要求在圖①、圖②中以AB和BC為邊各畫一個(gè)等對(duì)角四邊形ABCD. 要求:四邊形ABCD的頂點(diǎn)D在格點(diǎn)上,所畫的兩個(gè)四邊形不全等.
(4)已知:在等對(duì)角四邊形ABCD中,∠DAB=60°,∠ABC=90°,AB=5,AD=4,求對(duì)角線AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】水利部確定每年的3月22日至28日為“中國(guó)水周”(1994年以前為7月1日至7日),從1991年起,我國(guó)還將每年5月的第二周作為城市節(jié)約用水宣傳周.某社區(qū)為了進(jìn)一步提高居民珍惜水、保護(hù)水和水憂患意識(shí),提倡節(jié)約用水,從本社區(qū)5000戶家庭中隨機(jī)抽取100戶,調(diào)查他們家庭每月的平均用水量,并將調(diào)查的結(jié)果繪制成如下的兩幅不完整的統(tǒng)計(jì)圖表:
用戶月用水量頻數(shù)分布表 | ||
平均用水量(噸) | 頻數(shù) | 頻率 |
3~6噸 | 10 | 0.1 |
6~9噸 | m | 0.2 |
9~12噸 | 36 | 0.36 |
12~15噸 | 25 | n |
15~18噸 | 9 | 0.09 |
請(qǐng)根據(jù)上面的統(tǒng)計(jì)圖表,解答下列問題:
(1)在頻數(shù)分布表中:m=__ __,n=__ __;
(2)根據(jù)題中數(shù)據(jù)補(bǔ)全頻數(shù)直方圖;
(3)如果自來(lái)水公司將基本月用水量定為每戶每月12噸,不超過基本月用水量的部分享受基本價(jià)格,超出基本月用水量的部分實(shí)行加價(jià)收費(fèi),那么該社區(qū)用戶中約有多少戶家庭能夠全部享受基本價(jià)格?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算下列各題
(1)計(jì)算:(﹣1)3﹣( )﹣2× +6×|﹣ |
(2)化簡(jiǎn)并求值:( )÷ ,其中a=1,b=2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀與思考 婆羅摩笈多(Brahmagupta),是一位印度數(shù)學(xué)家和天文學(xué)家,書寫了兩部關(guān)于數(shù)學(xué)和天文學(xué)的書籍,他的一些數(shù)學(xué)成就在世界數(shù)學(xué)史上有較高的地位,他的負(fù)數(shù)概念及加減法運(yùn)算僅晚于中國(guó)《九章算術(shù)》,而他的負(fù)數(shù)乘除法法則在全世界都是領(lǐng)先的,他還提出了著名的婆羅摩笈多定理,該定理的內(nèi)容及部分證明過程如下:
已知:如圖1,四邊形ABCD內(nèi)接于⊙O,對(duì)角線AC⊥BD于點(diǎn)P,PM⊥AB于點(diǎn)M,延長(zhǎng)MP交CD于點(diǎn)N,求證:CN=DN.
證明:在△ABP和△BMP中,∵AC⊥BD,PM⊥AB,
∴∠BAP+∠ABP=90°,∠BPM+∠MBP=90°.
∴∠BAP=∠BPM.
∵∠DPN=∠BPM,∠BAP=∠BDC.
∴…
(1)請(qǐng)你閱讀婆羅摩笈多定理的證明過程,完成剩余的證明部分.
(2)已知:如圖2,△ABC內(nèi)接于⊙O,∠B=30°,∠ACB=45°,AB=2,點(diǎn)D在⊙O上,∠BCD=60°,連接AD,與BC交于點(diǎn)P,作PM⊥AB于點(diǎn)M,延長(zhǎng)MP交CD于點(diǎn)N,則PN的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,C為線段AB上一點(diǎn),點(diǎn)D為BC的中點(diǎn),且AB=18cm,AC=4CD.
(1)圖中共有 條線段;
(2)求AC的長(zhǎng);
(3)若點(diǎn)E在直線AB上,且EA=2cm,求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明騎車從家出發(fā),先向東騎行1km到達(dá)A村,繼續(xù)向東騎行4km到達(dá)B村,然后向西騎行8km到達(dá)C村,最后回到家.
(1) 以快遞公司為原點(diǎn),以向東方向?yàn)檎较,?/span>1 cm表示1 km,畫出數(shù)軸,并在數(shù)軸上表示出A、B、C三個(gè)店的位置;
(2) C店離A店有多遠(yuǎn)?
(3) 快遞員一共騎行了多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知拋物線y=﹣x2+bx+c與x軸交于A(﹣1,0),B兩點(diǎn),(點(diǎn)A在點(diǎn)B的左側(cè)),與直線AC交于點(diǎn)C(2,3),直線AC與拋物線的對(duì)稱軸l相交于點(diǎn)D,連接BD.
(1)求拋物線的函數(shù)表達(dá)式,并求出點(diǎn)D的坐標(biāo);
(2)如圖2,若點(diǎn)M、N同時(shí)從點(diǎn)D出發(fā),均以每秒1個(gè)單位長(zhǎng)度的速度分別沿DA、DB運(yùn)動(dòng),連接MN,將△DMN沿MN翻折,得到△D′MN,判斷四邊形DMD′N的形狀,并說(shuō)明理由,當(dāng)運(yùn)動(dòng)時(shí)間t為何值時(shí),點(diǎn)D′恰好落在x軸上?
(3)在平面內(nèi),是否存在點(diǎn)P(異于A點(diǎn)),使得以P、B、D為頂點(diǎn)的三角形與△ABD相似(全等除外)?若存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com