【題目】如圖,在Rt△ABC中,,,,點(diǎn)是邊上一個動點(diǎn)(不與、重合),以點(diǎn)為圓心,為半徑作,與射線交于點(diǎn);以點(diǎn)為圓心,為半徑作,設(shè).
(1)如圖,當(dāng)點(diǎn)與點(diǎn)重合時,求的值;
(2)當(dāng)點(diǎn)在線段上,如果與的另一個交點(diǎn)在線段上時,設(shè),試求與之間的函數(shù)解析式,并寫出的取值范圍;
(3)在點(diǎn)的運(yùn)動的過程中,如果與線段只有一個公共點(diǎn),請直接寫出的取值范圍.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知BC是⊙O的直徑,點(diǎn)D是BC延長線上一點(diǎn),AB=AD,AE是⊙O的弦,∠AEC=30°.
(1)求證:直線AD是⊙O的切線;
(2)若AE⊥BC,垂足為M,⊙O的半徑為4,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸交于兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),交軸于點(diǎn),將直線以點(diǎn)為旋轉(zhuǎn)中心,順時針旋轉(zhuǎn),交軸于點(diǎn),交拋物線于另一點(diǎn).直線的解析式為:
點(diǎn)是第一象限內(nèi)拋物線上一點(diǎn),當(dāng)的面積最大時,在線段上找一點(diǎn)(不與重合),使的值最小,求出點(diǎn)的坐標(biāo),并直接寫出的最小值;
如圖,將沿射線方向以每秒個單位的速度平移,記平移后的為,平移時間為秒,當(dāng)為等腰三角形時,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知對稱軸為直線的拋物線與軸交于、兩點(diǎn),與軸交于C點(diǎn),其中.
(1)求點(diǎn)B的坐標(biāo)及此拋物線的表達(dá)式;
(2)點(diǎn)D為y軸上一點(diǎn),若直線BD和直線BC的夾角為15,求線段CD的長度;
(3)設(shè)點(diǎn)為拋物線的對稱軸上的一個動點(diǎn),當(dāng)為直角三角形時,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形的對角線、交于點(diǎn),過點(diǎn)的線段與、分別交于點(diǎn)、,如果,,,那么四邊形的周長為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=﹣x2+x+6及一次函數(shù)y=﹣x+m,將該二次函數(shù)在x軸上方的圖象沿x軸翻折到x軸下方,圖象的其余部分不變,得到一個新函數(shù)(如圖所示),請你在圖中畫出這個新圖象,當(dāng)直線y=﹣x+m與新圖象有4個交點(diǎn)時,m的取值范圍是( 。
A. ﹣<m<3 B. ﹣<m<2 C. ﹣2<m<3 D. ﹣6<m<﹣2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明想了解周圍的人是否具有節(jié)水意識,于是他設(shè)計了一份簡單的調(diào)查問卷,并到小區(qū)里隨機(jī)調(diào)查了40人,他將部分調(diào)查結(jié)果制成了統(tǒng)計圖.
小明的調(diào)查問卷:
調(diào)查問卷
年齡:________歲
(1)你在刷牙時會一直開著水龍頭嗎?
A.經(jīng)常這樣 B.有時這料 C.從不這樣
(2)你會將用過的水另作他用嗎?用洗衣服的水拖地、沖廁所等.
A.經(jīng)常這樣 B.有時這料 C.從不這樣
小明繪制的統(tǒng)計圖:
問題1中各年齡段選擇“從不這樣”的情況 問題1中各年齡段選擇“經(jīng)常這樣”的情況
(1)在小明調(diào)查的40人中,各年齡段分別有多少人接受了調(diào)查?
(2)通過小明的調(diào)查數(shù)據(jù),你認(rèn)為哪個年齡段的人最具有節(jié)水意識?
(3)為了倡導(dǎo)你身邊的人節(jié)約用水,你有什么建議?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為積極宣傳國家相關(guān)政策,某村在一山坡的頂端的平地上豎立一塊宣傳牌.小明為測得宣傳牌的高度,他站在山腳處測得宣傳牌的頂端的仰角為,已知山坡的坡度,山坡的長度為米,山坡頂端與宣傳牌底端的水平距離為2米,求宣傳牌的高度(精確到1米)
(參考數(shù)據(jù):,,,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知E,F(xiàn)分別為正方形ABCD的邊AB,BC的中點(diǎn),AF與DE交于點(diǎn)M,O為BD的中點(diǎn),則下列結(jié)論:
①∠AME=90°;②∠BAF=∠EDB;③∠BMO=90°;④MD=2AM=4EM;⑤AM=MF.其中正確結(jié)論的是( )
A. ①③④ B. ②④⑤ C. ①③④⑤ D. ①③⑤
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com