【題目】如圖,拋物線y=ax2+bx+c經(jīng)過△ABC的三個頂點,與y軸相交于(0,),點A坐標為(﹣1,2),點B是點A關(guān)于y軸的對稱點,點C在x軸的正半軸上.
(1)求該拋物線的函數(shù)關(guān)系表達式.
(2)點F為線段AC上一動點,過F作FE⊥x軸,F(xiàn)G⊥y軸,垂足分別為E、G,當四邊形OEFG為正方形時,求出F點的坐標.
(3)將(2)中的正方形OEFG沿OC向右平移,記平移中的正方形OEFG為正方形DEFG,當點E和點C重合時停止運動,設平移的距離為t,正方形的邊EF與AC交于點M,DG所在的直線與AC交于點N,連接DM,是否存在這樣的t,使△DMN是等腰三角形?若存在,求t的值;若不存在請說明理由.
【答案】(1)y=﹣x2+;(2)(1,1);(3)當△DMN是等腰三角形時,t的值為,3﹣或1.
【解析】
試題分析:(1)易得拋物線的頂點為(0,),然后只需運用待定系數(shù)法,就可求出拋物線的函數(shù)關(guān)系表達式;
(2)①當點F在第一象限時,如圖1,可求出點C的坐標,直線AC的解析式,設正方形OEFG的邊長為p,則F(p,p),代入直線AC的解析式,就可求出點F的坐標;②當點F在第二象限時,同理可求出點F的坐標,此時點F不在線段AC上,故舍去;
(3)過點M作MH⊥DN于H,如圖2,由題可得0≤t≤2.然后只需用t的式子表示DN、DM2、MN2,分三種情況(①DN=DM,②ND=NM,③MN=MD)討論就可解決問題.
試題解析:(1)∵點B是點A關(guān)于y軸的對稱點,
∴拋物線的對稱軸為y軸,
∴拋物線的頂點為(0,),
故拋物線的解析式可設為y=ax2+.
∵A(﹣1,2)在拋物線y=ax2+上,
∴a+=2,
解得a=﹣,
∴拋物線的函數(shù)關(guān)系表達式為y=﹣x2+;
(2)①當點F在第一象限時,如圖1,
令y=0得,﹣x2+=0,
解得:x1=3,x2=﹣3,
∴點C的坐標為(3,0).
設直線AC的解析式為y=mx+n,
則有,
解得,
∴直線AC的解析式為y=﹣x+.
設正方形OEFG的邊長為p,則F(p,p).
∵點F(p,p)在直線y=﹣x+上,
∴﹣p+=p,
解得p=1,
∴點F的坐標為(1,1).
②當點F在第二象限時,
同理可得:點F的坐標為(﹣3,3),
此時點F不在線段AC上,故舍去.
綜上所述:點F的坐標為(1,1);
(3)過點M作MH⊥DN于H,如圖2,
則OD=t,OE=t+1.
∵點E和點C重合時停止運動,∴0≤t≤2.
當x=t時,y=﹣t+,則N(t,﹣t+),DN=﹣t+.
當x=t+1時,y=﹣(t+1)+=﹣t+1,則M(t+1,﹣t+1),ME=﹣t+1.
在Rt△DEM中,DM2=12+(﹣t+1)2=t2﹣t+2.
在Rt△NHM中,MH=1,NH=(﹣t+)﹣(﹣t+1)=,
∴MN2=12+()2=.
①當DN=DM時,
(﹣t+)2=t2﹣t+2,
解得t=;
②當ND=NM時,
﹣t+=,
解得t=3﹣;
③當MN=MD時,
=t2﹣t+2,
解得t1=1,t2=3.
∵0≤t≤2,∴t=1.
綜上所述:當△DMN是等腰三角形時,t的值為,3﹣或1.
科目:初中數(shù)學 來源: 題型:
【題目】(本題6分)下列是用火柴棒拼出的一列圖形.
仔細觀察,找出規(guī)律,解答下列各題:
(1)第4個圖中共有_____ 根火柴,第6個圖中共有_____ 根火柴;
(2)第n個圖形中共有_____ 根火柴(用含n的式子表示);
(3)請計算第2013個圖形中共有多少根火柴?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在如圖的方格中,每個小正方形的邊長都為1,△ABC的頂點均在格點上.在建立平面直角坐標系后,點B的坐標為(﹣1,2).
(1)把△ABC向下平移8個單位后得到對應的△A1B1C1,畫出△A1B1C1;
(2)畫出與△A1B1C1關(guān)于y軸對稱的△A2B2C2;
(3)若點P(a,b)是△ABC邊上任意一點,P2是△A2B2C2邊上與P對應的點,寫出P2的坐標為 ;
(4)試在y軸上找一點Q(在圖中標出來),使得點Q到B2、C2兩點的距離之和最小,并求出QB2+QC2的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某自主服裝品牌設計出了一種西裝和領(lǐng)帶,西裝每套定價200元,領(lǐng)帶每條定價40元.在推廣服裝品牌初期開展促銷活動,可以同時向客戶提供兩種優(yōu)惠方案:
方案①買一套西裝送一條領(lǐng)帶;
方案②西裝和領(lǐng)帶都按定價的90%付款.
現(xiàn)某客戶要到該服裝品牌購買西裝20套,領(lǐng)帶條(超過20).
(1)若該客戶按方案①購買,需付款_ _____元(用含的式子表示);
若該客戶按方案②購買,需付款__ ____元(用含的式子表示);
(2)若=30,通過計算說明此時按哪種方案購買較為合算?
(3)當=30時,你能給出一種更為省錢的購買方案嗎?試寫出你的購買方法,并計算出所需的錢數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,分別在三角形、四邊形、五邊形的廣場各角修建半徑為R的扇形草坪(圖中陰影部分).
(1)圖①中草坪的面積為__________;
(2)圖②中草坪的面積為__________;
(3)圖③中草坪的面積為__________;
(4)如果多邊形的邊數(shù)為n,其余條件不變,那么,你認為草坪的面積為__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com