【題目】如圖,ABC中,AB=AC,DBC的中點,AC的垂直平分線分別交AC、ADAB于點E、O、F,則圖中全等的三角形的對數(shù)是______

【答案】4

【解析】

根據(jù)已知條件“AB=AC,DBC中點”,得出△ABD≌△ACD,然后再由AC的垂直平分線分別交AC、AD、AB于點E、O、F,推出△AOE≌△EOC,從而根據(jù)“SSS”或“SAS”找到更多的全等三角形,要由易到難,不重不漏.

解:∵AB=AC,DBC中點,

∴CD=BD,∠BDO=∠CDO=90°,

在△ABD和△ACD中,

∴△ABD≌△ACD;

∵EF垂直平分AC,

∴OA=OC,AE=CE,

在△AOE和△COE中,

∴△AOE≌△COE;

在△BOD和△COD中,

∴△BOD≌△COD;

在△AOC和△AOB中,

∴△AOC≌△AOB;

故答案是:4.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是我國幾家銀行的標(biāo)志,其中即是軸對稱圖形又是中心對稱圖形的有( )
A.2個
B.3個
C.4個
D.5個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系xOy中,點A的坐標(biāo)為(0,1),取一點B(b,0),連接AB,做線段AB的垂直平分線l1 , 過點B作x軸的垂線l2 , 記l1 , l2的交點為P.

(1)當(dāng)b=3時,在圖1中補(bǔ)全圖形(尺規(guī)作圖,不寫作法,保留作圖痕跡);
(2)小慧多次取不同數(shù)值b,得出相應(yīng)的點P,并把這些點用平滑的曲線連接起來發(fā)現(xiàn):這些點P竟然在一條曲線L上!
①設(shè)點P的坐標(biāo)為(x,y),試求y與x之間的關(guān)系式,并指出曲線L是哪種曲線;
②設(shè)點P到x軸,y軸的距離分別是d1 , d2 , 求d1+d2的范圍,當(dāng)d1+d2=8時,求點P的坐標(biāo);
③將曲線L在直線y=2下方的部分沿直線y=2向上翻折,得到一條“W”形狀的新曲線,若直線y=kx+3與這條“W”形狀的新曲線有4個交點,直接寫出k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠A=30°,∠C=90°,AB=12,四邊形EFPQ是矩形,點P與點C重合,點Q、E、F分別在BCAB、AC上(點E與點A、點B均不重合).

(1)當(dāng)AE=8時,求EF的長;

(2)設(shè)AEx,矩形EFPQ的面積為y

yx的函數(shù)關(guān)系式;

當(dāng)x為何值時,y有最大值,最大值是多少?

(3)當(dāng)矩形EFPQ的面積最大時,將矩形EFPQ以每秒1個單位的速度沿射線CB勻速向右運(yùn)動(當(dāng)點P到達(dá)點B時停止運(yùn)動),設(shè)運(yùn)動時間為t秒,矩形EFPQ與△ABC重疊部分的面積為S,求St的函數(shù)關(guān)系式,并寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點A、B、C、D是坐標(biāo)軸上的點且點C坐標(biāo)是(0,﹣1),AB=5,點(a,b)在如圖所示的陰影部分內(nèi)部(不包括邊界),已知OA=OD=4,則a的取值范圍是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,△ABC的頂點坐標(biāo)為:A(1,2),B(2, 一1), C (4, 3).

(1)將△ABC向左平移2個單位長度,再向上平移1個單位長度,得△A'B'C'.畫出△A'B'C',并寫出△A'B'C'的頂點坐標(biāo);

(2)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明家飲水機(jī)中原有水的溫度為20℃,通電開機(jī)后,飲水機(jī)自動開始加熱[此過程中水溫y(℃)與開機(jī)時間x(分)滿足一次函數(shù)關(guān)系],當(dāng)加熱到100℃時自動停止加熱,隨后水溫開始下降[此過程中水溫y(℃)與開機(jī)時間x(分)成反比例關(guān)系],當(dāng)水溫降至20℃時,飲水機(jī)又自動開始加熱…,重復(fù)上述程序(如圖所示),根據(jù)圖中提供的信息,解答下列問題:
(1)當(dāng)0≤x≤8時,求水溫y(℃)與開機(jī)時間x(分)的函數(shù)關(guān)系式;
(2)求圖中t的值;
(3)若小明在通電開機(jī)后即外出散步,請你預(yù)測小明散步45分鐘回到家時,飲水機(jī)內(nèi)的溫度約為多少℃?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC=10cm,BD⊥AC于點D,BD=8cm.點M從點A出發(fā),沿AC的方向勻速運(yùn)動,同時直線PQ由點B出發(fā),沿BA的方向勻速運(yùn)動,運(yùn)動過程中始終保持PQ∥AC,直線PQ交AB于點P、交BC于點Q、交BD于點F.連接PM,設(shè)運(yùn)動時間為t秒(0<t≤5).線段CM的長度記作y , 線段BP的長度記作y , y和y關(guān)于時間t的函數(shù)變化情況如圖所示.

(1)由圖2可知,點M的運(yùn)動速度是每秒cm,當(dāng)t為何值時,四邊形PQCM是平行四邊形?在圖2中反映這一情況的點是;
(2)設(shè)四邊形PQCM的面積為ycm2 , 求y與t之間的函數(shù)關(guān)系式;
(3)是否存在某一時刻t,使S四邊形PQCM= S△ABC?若存在,求出t的值;若不存在,說明理由;
(4)連接PC,是否存在某一時刻t,使點M在線段PC的垂直平分線上?若存在,求出此時t的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,分別以直角△ABC的斜邊AB,直角邊AC為邊向△ABC外作等邊△ABD和等邊△ACE,F(xiàn)AB的中點,DEAB交于點G,EFAC交于點H,∠ACB=90°,∠BAC=30°.給出如下結(jié)論:

①EFAC四邊形ADFE為菱形;③AD=4AG;④FH=BD

其中正確結(jié)論的為______(請將所有正確的序號都填上).

查看答案和解析>>

同步練習(xí)冊答案