【題目】如圖,點B(a,b)在第一象限,過B作BA⊥y軸于A,過B作BC⊥x軸于C,且實數(shù)a、b滿足(a-b-2)2+|2a+b-10|≤0,含45角的Rt△DEF的一條直角邊DF與x軸重合,DE⊥x軸于D,點F與坐標原點重合,DE=DF=3.△DEF從某時刻開始沿著坐標軸以1個單位長度每秒的速度勻速運動,運動時間為t秒.
(1)求點B的坐標;
(2)若△DEF沿著y軸負方向運動,連接AE,EG平分∠AEF,EH平分∠AED,當EG∥DF時,求∠HEF的度數(shù);
(3)若△DEF沿著x軸正方向運動,在運動過程中,記△AEF與長方形OABC重疊部分的面積為S,當0<t≤4,S=時,請你求出運動時間t.
【答案】(1)B(4,2);(2)∠HEF==22.5°;(3)t=1或4s.
【解析】
(1)利用非負數(shù)的性質即可解決問題;
(2)當EG∥DF時,只要證明∠AWED=135°,即可解決問題;
(3)分兩種情形①如圖2中,當0<t<2時,重疊部分是△APF,S=(2-t)t=t-t2,②如圖3中,當2<t≤4時,重疊部分是△PAF,S=(t-2)2=t-2,分別構建方程即可解決問題;
解:(1)∵(a-b-2)2+|2a+b-10|≤0,
又∵(a-b-2)2≥0,|2a+b-10|≥0,
∴,
解得,
∴B(4,2).
(2)如圖1中,設EG交y軸于N.
當EG∥DF時,∠NEF=∠EFD=45°,
∵∠AEF=90°,
∴∠AEN=45°,
∵DE∥FN,EN∥DF,
∴四邊形DENF是平行四邊形,
∵∠EDF=90°,DE=DF,
∴四邊形DENF是正方形,
∴∠DEN=90°,
∴∠AED=135°,
∵EH平分∠AED,
∴∠DEH=×135°=67.5°,
∵∠DEF=45°,
∴∠HEF=∠DEH-∠DEF=22.5°.
(3)①如圖2中,當0<t<2時,重疊部分是△APF,S=(2-t)t=t-t2,
由題意:t-t2=t,
解得t=1,.
②如圖3中,當2<t≤4時,重疊部分是△PAF,S=(t-2)2=t-2,
由題意:t-2=t,解得t=4,
綜上所述,當t=1或4s時,滿足條件,S=t.
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=x2+bx﹣3(b是常數(shù))經(jīng)過點A(﹣1,0).
(1)求該拋物線的解析式和頂點坐標;
(2)P(m,t)為拋物線上的一個動點,P關于原點的對稱點為P'.
① 當點P' 落在該拋物線上時,求m的值;
② 當點P' 落在第二象限內(nèi),P'A2取得最小值時,求m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法正確的是
A. “明天降雨的概率是80%”表示明天有80%的時間都在降雨
B. “拋一枚硬幣正面朝上的概率為”表示每拋2次就有一次正面朝上
C. “彩票中獎的概率為1%”表示買100張彩票肯定會中獎
D. “拋一枚正方體骰子,朝上的點數(shù)為2的概率為”表示隨著拋擲次數(shù)的增加,“拋出朝上的點數(shù)為2”這一事件發(fā)生的頻率穩(wěn)定在附近
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某汽車專賣店銷售A,B兩種型號的新能源汽車.上周售出1輛A型車和3輛B型車,銷售額為96萬元;本周已售出2輛A型車和1輛B型車,銷售額為62萬元.
(1)求每輛A型車和B型車的售價各為多少萬元?
(2)甲公司擬向該店購買A,B兩種型號的新能源汽車共6輛,且A型號車不少于2輛,購車費不少于130萬元,則有哪幾種購車方案?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,兩個全等的△ABC和△DEF中,∠ACB=∠DFE=90°,AB=DE,其中點B和點D重合,點F在BC上,將△DEF沿射線BC平移,設平移的距離為x,平移后的圖形與△ABC重合部分的面積為y,y關于x的函數(shù)圖象如圖2所示(其中0≤x≤m,m<x≤3,3<x≤4時,函數(shù)的解析式不同)
(1)填空:BC的長為_____;
(2)求y關于x的函數(shù)關系式,并寫出x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩名隊員參加射擊訓練,成績分別被制成下列兩個統(tǒng)計圖:
根據(jù)以上信息,整理分析數(shù)據(jù)如下:
平均成績/環(huán) | 中位數(shù)/環(huán) | 眾數(shù)/環(huán) | 方差 | |
甲 | a | 7 | 7 | 1.2 |
乙 | 7 | b | 8 | c |
(1)寫出表格中a,b,c的值;
(2)分別運用表中的四個統(tǒng)計量,簡要分析這兩名隊員的射擊訓練成績.若選派其中一名參賽,你認為應選哪名隊員.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,BP是⊙O的弦,弦CD⊥AB于點F,交BP于點G,E在CD的延長線上,EP=EG,
(1)求證:直線EP為⊙O的切線;
(2)點P在劣弧AC上運動,其他條件不變,若BG2=BFBO.試證明BG=PG;
(3)在滿足(2)的條件下,已知⊙O的半徑為3,sinB=.求弦CD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校初二數(shù)學興趣小組活動時,碰到這樣一道題:
“已知正方形,點分別在邊上,若,則”.
經(jīng)過思考,大家給出了以下兩個方案:
(甲)過點作交于點,過點作交于點;
(乙)過點作交于點,作交的延長線于點;同學們順利地解決了該題后,大家琢磨著想改變問題的條件,作更多的探索.
(1)對小杰遇到的問題,請在甲、乙兩個方案中任選一個,加以證明(如圖1);
圖1 圖2
(2)如果把條件中的“”改為“與的夾角為”,并假設正方形的邊長為l,的長為(如圖2),試求的長度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com