某公司有型產(chǎn)品40件,型產(chǎn)品60件,分配給下屬甲、乙兩個商店銷售,其中70件給甲店,30件給乙店,且都能賣完.兩商店銷售這兩種產(chǎn)品每件的利潤(元)如下表:
 
型利潤
型利潤
甲店
200
170
乙店
160
150
(1)設(shè)分配給甲店型產(chǎn)品件,這家公司賣出這100件產(chǎn)品的總利潤為(元),求關(guān)于的函數(shù)關(guān)系式,并求出的取值范圍;
(2)若公司要求總利潤不低于17560元,說明有多少種不同分配方案,并將各種方案設(shè)計出來;
(3)為了促銷,公司決定僅對甲店型產(chǎn)品讓利銷售,每件讓利元,但讓利后型產(chǎn)品的每件利潤仍高于甲店型產(chǎn)品的每件利潤.甲店的型產(chǎn)品以及乙店的型產(chǎn)品的每件利潤不變,問該公司又如何設(shè)計分配方案,使總利潤達到最大?

(1)
(2)有三種不同的分配方案.
時,甲店型38件,型32件,乙店型2件,型28件.
時,甲店型39件,型31件,乙店型1件,型29件.
時,甲店型40件,型30件,乙店型0件,型30件
(3)甲店型10件,型60件,乙店型30件,型0件,能使總利潤達到最大解析:

依題意,甲店型產(chǎn)品有件,乙店型有件,型有件,則
(1)

解得.(3分)
(2)由,

,39,40.
有三種不同的分配方案.
時,甲店型38件,型32件,乙店型2件,型28件.
時,甲店型39件,型31件,乙店型1件,型29件.
時,甲店型40件,型30件,乙店型0件,型30件.   (3分)
(3)依題意:


①當時,,即甲店型40件,型30件,乙店型0件,型30件,能使總利潤達到最大.
②當時,,符合題意的各種方案,使總利潤都一樣.
③當時,,即甲店型10件,型60件,乙店型30件,型0件,能使總利潤達到最大.   (4分)
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

某公司有型產(chǎn)品40件,型產(chǎn)品60件,分配給下屬甲、乙兩個商店銷售,其中70件給甲店,30件給乙店,且都能賣完.兩商店銷售這兩種產(chǎn)品每件的利潤(元)如下表:

 

型利潤

型利潤

甲店

200

170

乙店

160

150

(1)設(shè)分配給甲店型產(chǎn)品件,這家公司賣出這100件產(chǎn)品的總利潤為(元),求關(guān)于的函數(shù)關(guān)系式,并求出的取值范圍;

(2)若公司要求總利潤不低于17560元,說明有多少種不同分配方案,并將各種方案設(shè)計出來;

(3)為了促銷,公司決定僅對甲店型產(chǎn)品讓利銷售,每件讓利元,但讓利后型產(chǎn)品的每件利潤仍高于甲店型產(chǎn)品的每件利潤.甲店的型產(chǎn)品以及乙店的型產(chǎn)品的每件利潤不變,問該公司又如何設(shè)計分配方案,使總利潤達到最大?

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011屆北京市石景山區(qū)初三第一學(xué)期期末數(shù)學(xué)卷 題型:解答題

某公司有型產(chǎn)品40件,型產(chǎn)品60件,分配給下屬甲、乙兩個商店銷售,其中70件給甲店,30件給乙店,且都能賣完.兩商店銷售這兩種產(chǎn)品每件的利潤(元)如下表:

 
型利潤
型利潤
甲店
200
170
乙店
160
150
(1)設(shè)分配給甲店型產(chǎn)品件,這家公司賣出這100件產(chǎn)品的總利潤為(元),求關(guān)于的函數(shù)關(guān)系式,并求出的取值范圍;
(2)若公司要求總利潤不低于17560元,說明有多少種不同分配方案,并將各種方案設(shè)計出來;
(3)為了促銷,公司決定僅對甲店型產(chǎn)品讓利銷售,每件讓利元,但讓利后型產(chǎn)品的每件利潤仍高于甲店型產(chǎn)品的每件利潤.甲店的型產(chǎn)品以及乙店的型產(chǎn)品的每件利潤不變,問該公司又如何設(shè)計分配方案,使總利潤達到最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年湖北省漢川市中考模擬數(shù)學(xué)試卷(解析版) 題型:解答題

某公司有型產(chǎn)品40件,型產(chǎn)品60件,分配給下屬甲、乙兩個商店銷售,其中70件給甲店,30件給乙店,且都能賣完.兩商店銷售這兩種產(chǎn)品每件的利潤(元)如下表:

 

型利潤

型利潤

甲店

200

170

乙店

160

150

(1)設(shè)分配給甲店型產(chǎn)品件,這家公司賣出這100件產(chǎn)品的總利潤為(元),求關(guān)于的函數(shù)關(guān)系式,并求出的取值范圍;

(2)若公司要求總利潤不低于17560元,說明有多少種不同分配方案,并將各種方案設(shè)計出來;

(3)為了促銷,公司決定僅對甲店型產(chǎn)品讓利銷售,每件讓利元,但讓利后型產(chǎn)品的每件利潤仍高于甲店型產(chǎn)品的每件利潤.甲店的型產(chǎn)品以及乙店的型產(chǎn)品的每件利潤不變,問該公司又如何設(shè)計分配方案,使總利潤達到最大?

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010-2011學(xué)年北京市海淀區(qū)初三第一學(xué)期期末數(shù)學(xué)卷 題型:解答題

某公司有型產(chǎn)品40件,型產(chǎn)品60件,分配給下屬甲、乙兩個商店銷售,其中70件給甲店,30件給乙店,且都能賣完.兩商店銷售這兩種產(chǎn)品每件的利潤(元)如下表:

 

型利潤

型利潤

甲店

200

170

乙店

160

150

(1)設(shè)分配給甲店型產(chǎn)品件,這家公司賣出這100件產(chǎn)品的總利潤為(元),求關(guān)于的函數(shù)關(guān)系式,并求出的取值范圍;

(2)若公司要求總利潤不低于17560元,說明有多少種不同分配方案,并將各種方案設(shè)計出來;

(3)為了促銷,公司決定僅對甲店型產(chǎn)品讓利銷售,每件讓利元,但讓利后型產(chǎn)品的每件利潤仍高于甲店型產(chǎn)品的每件利潤.甲店的型產(chǎn)品以及乙店的型產(chǎn)品的每件利潤不變,問該公司又如何設(shè)計分配方案,使總利潤達到最大?

 

查看答案和解析>>

同步練習冊答案