【題目】中,,,點(diǎn)是線段的中點(diǎn),點(diǎn)在射線上,連接,平移,使點(diǎn)移動(dòng)到點(diǎn),得到(點(diǎn)與點(diǎn)對(duì)應(yīng),點(diǎn)與點(diǎn)對(duì)應(yīng)),于點(diǎn)

1)若點(diǎn)是線段的中點(diǎn),如圖1

①依題意補(bǔ)全圖1;

②求的長(zhǎng);

2)若點(diǎn)在線段的延長(zhǎng)線上,射線與射線交于點(diǎn),若,求的長(zhǎng).

【答案】1)①見(jiàn)解析;②;(2CE

【解析】

1)①利用平移的性質(zhì)畫出圖形;

②利用相似得出比例,即可求出線段DP的長(zhǎng).
2)根據(jù)條件MQDP,利用平行四邊形的性質(zhì)和相似三角形的性質(zhì),求出BN的長(zhǎng)即可解決.

解:(1)①如圖1,補(bǔ)全圖形


②連接AD,如圖1
RtABN中,
∵∠B90°,AB4,BN1,
AN,
∵線段AN平移得到線段DM,
DMAN,
ADNM1ADMC,
∴△ADP∽△CMP

;

2)如圖,連接NQ,


由平移知:ANDM,且ANDM
MQDP,
PQDM
ANPQ,且ANPQ
∴四邊形ANQP是平行四邊形.
NQAP
∴∠BQN=∠BAC45°
又∵∠NBQ=∠ABC90°
BNBQ
ANMQ,
,

又∵MBC的中點(diǎn),且ABBC4,
,
NB(負(fù)數(shù)舍去).
MEBN
CE

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,以△ABC的一邊AC為直徑的⊙OAB邊于點(diǎn)D,E是⊙O上一點(diǎn),連接DE,∠E=∠B

1)求證:BC是⊙O的切線;

2)若∠E45°,AC4,求⊙O的內(nèi)接正四邊形的邊長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解八年級(jí)學(xué)生雙休日的課外閱讀情況,學(xué)校隨機(jī)調(diào)查了該年級(jí)25名學(xué)生,得到了一組樣本數(shù)據(jù),其統(tǒng)計(jì)表如下:

八年級(jí)25名學(xué)生雙休日課外閱讀時(shí)間統(tǒng)計(jì)表

閱讀時(shí)間

1小時(shí)

2小時(shí)

3小時(shí)

4小時(shí)

5小時(shí)

6小時(shí)

人數(shù)

3

4

6

3

2

1)請(qǐng)求出閱讀時(shí)間為4小時(shí)的人數(shù)所占百分比;

2)試確定這個(gè)樣本的眾數(shù)和平均數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)先化簡(jiǎn),再求值:,其中a2;

2)如圖,在ABCD中,EBC邊上的中點(diǎn),將ABE沿AE折疊,點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)F,延長(zhǎng)AFCD交于點(diǎn)G,求證:GCGF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線P與拋物線Q在同一平面直角坐標(biāo)系中(其中at均為常數(shù),且t0),已知點(diǎn)A1,3)為拋物線P上一點(diǎn),過(guò)點(diǎn)A作直線lx軸,與拋物線P交于另一點(diǎn)B

1)求a的值及點(diǎn)B的坐標(biāo);

2)當(dāng)拋物線Q經(jīng)過(guò)點(diǎn)A時(shí)

①求拋物線Q的解析式;

②設(shè)直線l與拋物線Q的另一交點(diǎn)為C,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線yx2+bx+c經(jīng)過(guò)點(diǎn)AB、C,已知A(﹣1,0),C0,﹣3).

1)求拋物線的解析式;

2)如圖1,拋物線頂點(diǎn)為E,EFx軸于F點(diǎn),Mm,0)是x軸上一動(dòng)點(diǎn),N是線段EF上一點(diǎn),若∠MNC90°,請(qǐng)指出實(shí)數(shù)m的變化范圍,并說(shuō)明理由.

3)如圖2,將拋物線平移,使其頂點(diǎn)E與原點(diǎn)O重合,直線ykx+2k0)與拋物線相交于點(diǎn)P、Q(點(diǎn)P在左邊),過(guò)點(diǎn)Px軸平行線交拋物線于點(diǎn)H,當(dāng)k發(fā)生改變時(shí),請(qǐng)說(shuō)明直線QH過(guò)定點(diǎn),并求定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中 過(guò)點(diǎn)A作AEDC,垂足為E,連接BE,F(xiàn)為BE上一點(diǎn),且AFE=D.

(1)求證:ABF∽△BEC;

(2)若AD=5,AB=8,sinD=,求AF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】RtABC中,∠ABC=90°,∠BAC30°,將ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)一定的角度得到AED,點(diǎn)B、C的對(duì)應(yīng)點(diǎn)分別是E、D.

(1)如圖1,當(dāng)點(diǎn)E恰好在AC上時(shí),求∠CDE的度數(shù);

(2)如圖2,若=60°時(shí),點(diǎn)F是邊AC中點(diǎn),求證:四邊形BFDE是平行四邊形.

查看答案和解析>>

同步練習(xí)冊(cè)答案