如圖所示,P是⊙O外一點(diǎn),PA是⊙O的切線,A是切點(diǎn),B是⊙O上一點(diǎn),且PA=PB,連接AO、BO、AB,并延長(zhǎng)BO與切線PA相交于點(diǎn)Q.
(1)求證:PB是⊙O的切線;
(2)求證:AQ•PQ=OQ•BQ;
(3)設(shè)∠AOQ=α,若cosα=
4
5
,OQ=15,求AB的長(zhǎng).
(1)證明:連接OP,與AB交于點(diǎn)C.
∵PA=PB,OA=OB,OP=OP,
∴△OAP≌△OBP(SSS),
∴∠OBP=∠OAP,
∵PA是⊙O的切線,A是切點(diǎn),
∴∠OAP=90°,
∴∠OBP=90°,即PB是⊙O的切線;

(2)證明:∵∠Q=∠Q,∠OAQ=∠QBP=90°,
∴△QAO△QBP,
AQ
BQ
=
OQ
PQ
,即AQ•PQ=OQ•BQ;

(3)連OP并交AB于點(diǎn)C,
在Rt△OAQ中,∵OQ=15,cosα=
4
5
,
∴OA=12,AQ=9,
∴QB=27;
AQ
BQ
=
OQ
PQ
,
∴PQ=45,即PA=36,
∴OP=12
10
;
∵∠APO=∠APO,∠PAO=∠PCA=90°
∴△PAC△POA,
PA
PO
=
AC
AO
,
∴PA•OA=OP•AC,即36×12=12
10
•AC,
∴AC=
18
5
10
,故AB=
36
5
10
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知AB是⊙O的直徑,直線CD與⊙O相切于點(diǎn)C,AC平分∠DAB.
(1)試探究AD和CD的位置關(guān)系,并說(shuō)明理由.
(2)若AD=3,AC=
15
,求AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在平面直角坐標(biāo)系xOy中,直線AB經(jīng)過(guò)點(diǎn)A(-4,0)、B(0,4),⊙O的半徑為1(O為坐標(biāo)原點(diǎn)),點(diǎn)P在直線AB上,過(guò)點(diǎn)P作⊙O的一條切線PQ,Q為切點(diǎn),則切線長(zhǎng)PQ的最小值為_(kāi)_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在△ABC中,∠C=90°,AC+BC=8,∠ACB的平分線交AB于點(diǎn)O,以O(shè)為圓心的⊙O與AC相切于點(diǎn)D.
(1)求證:⊙0與BC相切;
(2)當(dāng)AC=2時(shí),求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,AB是⊙O的直徑,AC是弦,CD是⊙O的切線,C為切點(diǎn),AD⊥CD于點(diǎn)D.求證:
(1)∠AOC=2∠ACD;
(2)AC2=AB•AD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在三角板ABC中,∠C=90°,∠B=30°,O為AB上一點(diǎn),⊙O的半徑為1,現(xiàn)將三角板平移,使AC與⊙O相切,則AO=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,已知PA、PB是⊙O的切線,A、B為切點(diǎn),AC是⊙O的直徑,∠P=40°,則∠BAC的大小是( 。
A.70°B.40°C.50°D.20°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,直線l與半徑為5的⊙O相交于A、B兩點(diǎn),且與半徑OC垂直,垂足為H.若AB=8cm,l要與⊙O相切,則l應(yīng)沿OC所在直線向下平移______cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列命題中正確的是( 。
A.圓內(nèi)兩條互相垂直且相等的弦一定互相平分
B.垂直平分弦的直線一定經(jīng)過(guò)這個(gè)圓的圓心
C.無(wú)公共點(diǎn)的兩圓必外離
D.兩圓外公切線的長(zhǎng)等于圓心距

查看答案和解析>>

同步練習(xí)冊(cè)答案