【題目】如圖,平面直角坐標(biāo)系中,點(diǎn)軸上,點(diǎn)軸上.

(1)求直線的解析式;

(2)軸上有一點(diǎn)使得時(shí),求的面積.

【答案】(1);(2的面積為

【解析】

1)根據(jù)點(diǎn)A,B的坐標(biāo),利用待定系數(shù)法可求出直線AB的解析式;

2)設(shè)點(diǎn)P的坐標(biāo)為(t,0),分點(diǎn)P在原點(diǎn)左側(cè)及點(diǎn)P在原點(diǎn)右側(cè)兩種情況考慮:①若點(diǎn)Px軸上原點(diǎn)左側(cè),當(dāng)PB=AP時(shí),∠APO=2ABO,在RtAPO中,利用勾股定理可求出t的值,進(jìn)而可得出BP的長(zhǎng),再利用三角形的面積公式可求出△ABP的面積;②若點(diǎn)Px軸上原點(diǎn)右側(cè),由對(duì)稱(chēng)性,可得出點(diǎn)P′的坐標(biāo),進(jìn)而可得出BP′的長(zhǎng),再利用三角形的面積公式可求出△ABP′的面積.綜上,此題得解

解:(1)設(shè)直線的解析式為,則:

解得:

∴所求直線的解析式為:

2)設(shè)點(diǎn)

①若點(diǎn)軸上原點(diǎn)左側(cè),當(dāng)時(shí),

中,,

解得:

②若點(diǎn)在軸上原點(diǎn)右側(cè),由對(duì)稱(chēng)性,得點(diǎn)為,此時(shí)

綜合上述,的面積為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)附近的文具用品商店最近新進(jìn)了一批涂卡筆,每支8元,為了合理定價(jià),在第一周試行機(jī)動(dòng)價(jià)格,賣(mài)出時(shí)每支以10元為標(biāo)準(zhǔn),超出10元的部分記為正,不足10元的部分記為負(fù),文具店售貨員記錄了第一周涂卡筆的售價(jià)情況和售出情況:

(1)這一周文具用品店的涂卡筆哪天售出的單價(jià)最高?最高單價(jià)是多少元?

(2)這一周文具用品店出售此種涂卡筆的收益如何?(盈利或虧損的錢(qián)數(shù))

(3)文具用品店為了促銷(xiāo)這種涂卡筆,決定從下周一起推出兩種促銷(xiāo)方式:

方式一:購(gòu)買(mǎi)不超過(guò)3支涂卡筆,每支12元,超出3支的部分,每支打九折;

方式二:每支售價(jià)12元,購(gòu)買(mǎi)一支涂卡筆就贈(zèng)送成本價(jià)為0.8元的礦泉水一瓶。

有名同學(xué)想一次性購(gòu)買(mǎi)6支涂卡筆,文具店希望該同學(xué)通過(guò)哪種方式購(gòu)買(mǎi)才會(huì)使文具店盈利較多?請(qǐng)通過(guò)計(jì)算說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在平面直角坐標(biāo)系中,如圖,點(diǎn),點(diǎn),連接,過(guò)點(diǎn)B作直線A點(diǎn),設(shè)直線的解析式為

1)求直線的函數(shù)關(guān)系式;

2)若直線平分的面積時(shí),求Ax軸的距離;

3)作點(diǎn)C關(guān)于y軸的對(duì)稱(chēng)點(diǎn)D,若直線與線段有交點(diǎn),求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2017年5月14日15日,“一帶一路”國(guó)際合作高峰壇在北京行,本屆壇期間,中國(guó)同30多個(gè)國(guó)家簽署經(jīng)貿(mào)合作協(xié)議,某廠準(zhǔn)備生產(chǎn)甲、乙兩種商品共8萬(wàn)件銷(xiāo)“一帶一路”沿線國(guó)家和地區(qū),已知2件甲種商品與3件乙種商品的銷(xiāo)售收入相同,3件甲種商品比2件乙種商品的銷(xiāo)售收入1500元.

(1)甲商品與乙種商品的銷(xiāo)售單價(jià)各多少元?

(2)若甲、乙兩種商品的銷(xiāo)售總收入不低于5400萬(wàn)元,則至少銷(xiāo)售甲種商品多少萬(wàn)件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校八年級(jí)學(xué)生全部參加禁毒知識(shí)競(jìng)賽,從中抽取了部分學(xué)生,將他們的競(jìng)賽成績(jī)進(jìn)行統(tǒng)計(jì)后分為,四個(gè)等次,并將統(tǒng)計(jì)結(jié)果繪制成如下的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中所給的信息解答下列問(wèn)題:

(1)抽取了_______名學(xué)生成績(jī);

(2)扇形統(tǒng)計(jì)圖中等級(jí)所在扇形的圓心角度數(shù)是_________;

(3)為估算全校八年級(jí)“禁毒知識(shí)競(jìng)賽”平均分,現(xiàn)將、、依次記作分、分、分、分,請(qǐng)估算該校八年級(jí)知識(shí)競(jìng)賽平均分.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,給出下列四個(gè)結(jié)論:①abc>0;②4ac﹣b2<0;③4a+c<2b;④3b+2c<0;⑤m(am+b)+b<a(m≠﹣1).其中結(jié)論正確的個(gè)數(shù)是( 。

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線與坐標(biāo)軸交于點(diǎn)、兩點(diǎn),直線與直線相交于點(diǎn),交軸于點(diǎn),且的面積為.

(1)的值和點(diǎn)的坐標(biāo);

(2)求直線的解析式;

(3)若點(diǎn)是線段上一動(dòng)點(diǎn),過(guò)點(diǎn)軸交直線于點(diǎn),軸,軸,垂足分別為點(diǎn)、,是否存在點(diǎn),使得四邊形為正方形,若存在,請(qǐng)求出點(diǎn)坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,點(diǎn)O是邊AC上一個(gè)動(dòng)點(diǎn),過(guò)O作直線MNBC,設(shè)MN交BCA的平分線于點(diǎn)E,交BCA的外角平分線于點(diǎn)F.

(1)探究:線段OE與OF的數(shù)量關(guān)系并加以證明;

(2)當(dāng)點(diǎn)O在邊AC上運(yùn)動(dòng)時(shí),四邊形BCFE會(huì)是菱形嗎?若是,請(qǐng)證明;若不是,則說(shuō)明理由;

(3)當(dāng)點(diǎn)O運(yùn)動(dòng)到何處,且ABC滿(mǎn)足什么條件時(shí),四邊形AECF是正方形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AC=4,BC=3.點(diǎn)E從點(diǎn)A出發(fā),以每秒4個(gè)單位長(zhǎng)度的速度沿折線AC-CB運(yùn)動(dòng),到點(diǎn)B停止.當(dāng)點(diǎn)E不與△ABC的頂點(diǎn)重合時(shí),過(guò)點(diǎn)E作其所在直角邊的垂線交AB于點(diǎn)F,將△AEF繞點(diǎn)F沿逆時(shí)針?lè)较蛐D(zhuǎn)得到△NMF,使點(diǎn)A的對(duì)應(yīng)點(diǎn)N落在射線FE上.設(shè)點(diǎn)E的運(yùn)動(dòng)時(shí)間為t(秒).

(1)用含t的代數(shù)式表示線段CE的長(zhǎng).

(2)求點(diǎn)M落到邊BC上時(shí)t的值.

(3)當(dāng)點(diǎn)E在邊AC上運(yùn)動(dòng)時(shí),設(shè)NMF與△ABC重疊部分圖形為四邊形時(shí),四邊形的面積為S(平方單位),求St之間的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊(cè)答案