【題目】如圖,為加快網絡建設,某移動通信公司在一個坡度為21的山腰上建了一座垂直于水平面的信號通信塔,在距山腳處水平距離39米的點處測得通信塔底處的仰角是25°,通信塔頂處的仰角是42°.請求出通信塔的大約高度(結果保留整數(shù),參考數(shù)據(jù):,).

【答案】通信塔AB的大約高度為21米.

【解析】

延長ABDC延長線于點E,根據(jù)坡度的概念設CEx,得到BE2x,根據(jù)正切的概念列式求出x,得到DE的長,根據(jù)正切的定義求出AE,計算即可.

延長ABDC延長線于點E,則AEDC.

由題意知∠BDC25°、∠ADE42°、CD39米,

BC的坡度為21

∴設CEx、則BE2xDE39+x,

RtBDE中,由tanBDE可得≈0.5

解得:x13,

DE39+x52BE2x26,

RtADE中,AEDE·tanADE≈52×0.946.8,

ABAEBE46.826=20.8≈21(米),

答:通信塔AB的大約高度為21米.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】定義:將函數(shù)l的圖象繞點Pm,0)旋轉180°,得到新的函數(shù)l'的圖象,我們稱函數(shù)l'是函數(shù)關于點P的相關函數(shù).

例如:當m1時,函數(shù)y=(x+12+5關于點P10)的相關函數(shù)為y=﹣(x325

1)當m0

一次函數(shù)yx1關于點P的相關函數(shù)為 ;

點(,﹣)在二次函數(shù)y=﹣ax2ax+1a0)關于點P的相關函數(shù)的圖象上,求a的值.

2)函數(shù)y=(x12+2關于點P的相關函數(shù)y=﹣(x+322,則m   ;

3)當m1xm+2時,函數(shù)yx2mxm2關于點Pm,0)的相關函數(shù)的最大值為6,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,MAN=30°,在射線AN上取一點B,使AB=4 cm,過點BBCAM于點C,點D為邊AB上的動點(點D不與點A,點B重合),連接CD,過點DEDCD交直線AC于點E.在點D由點A到點B運動過程中,設AD=x cm,AE=y cm

1)取指定點作圖,根據(jù)下面表格預填結果,先通過作圖確定AD=2 cm時,點E的位置,測量AE的長度.

根據(jù)題意,在答題卡上補全圖形;

把表格補充完整:通過取點、畫圖、測量,得到了xy的幾組對應值,如表:

x/cm

1

2

3

y cm

0.4

0.8

1.0

m

1.0

0

4.0

m=______(結果保留一位小數(shù)).

2)在下面的平面直角坐標系xOy中,描出以補全后的表中各對對應值為坐標的點,畫出該函數(shù)的圖象;

3)結合畫出的函數(shù)圖象,解決問題:當AE=AD時,AD的長度約為______cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖顯示了用計算機模擬隨機拋擲一枚硬幣的某次實驗的結果

下面有三個推斷:

①當拋擲次數(shù)是100時,計算機記錄正面向上的次數(shù)是47,所以正面向上的概率是0.47;

②隨著試驗次數(shù)的增加,正面向上的頻率總在0.5附近擺動,顯示出一定的穩(wěn)定性,可以估計正面向上的概率是0.5;

③若再次用計算機模擬此實驗,則當拋擲次數(shù)為150時,正面向上的頻率一定是0.45

其中合理的是(  )

A.B.C.①②D.①③

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:連結菱形的一邊中點與對邊的兩端點的線段把它分成三個三角形,如果其中有兩個三角形相似,那么稱這樣的菱形為自相似菱形.

(1)判斷下列命題是真命題,還是假命題?

①正方形是自相似菱形;

②有一個內角為60°的菱形是自相似菱形.

③如圖1,若菱形ABCD是自相似菱形,∠ABC=α(0°α90°),EBC中點,則在△ABE,△AED,△EDC中,相似的三角形只有△ABE與△AED

(2)如圖2,菱形ABCD是自相似菱形,∠ABC是銳角,邊長為4EBC中點.

①求AE,DE的長;

ACBD交于點O,求tanDBC的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某居民小區(qū)的一處圓柱形的輸水管道破裂,維修人員為更換管道,需要確定管道圓形截面的半徑,如圖是水平放置的破裂管道有水部分的截面.

(1)請你補全這個輸水管道的圓形截面圖;(要求尺規(guī)作圖,保留作圖痕跡,不寫作法)

(2)若這個輸水管道有水部分的水面寬AB=32㎝,水最深處的地方高度為8㎝,求這個圓形截面的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一輛轎車在經過某路口的感應線BC處時,懸臂燈桿上的電子警察拍攝到兩張照片,兩感應線之間距離BC6.2m,在感應線B、C兩處測得電子警察A的仰角分別為∠ABD45°,∠ACD28°.求電子警察安裝在懸臂燈桿上的高度AD的長.(結果精確到0.1米)(參考數(shù)據(jù):sin28°0.47,cos28°0.88,tan28°0.53

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】從共享單車,共享汽車等共享出行到共享充電寶,共享雨傘等共享物品,各式各樣的共享經濟模式在各個領域迅速普及應用,越來越多的企業(yè)與個人成為參與者與受益者.小宇和小強分別對共享經濟中的“共享出行”和“共享知識”最感興趣,他們上網查閱了相關資料,順便收集到四個共享經濟領域的圖標,并將其制成編號為,,,的四張卡片(除編號和內容外,其余完全相同)他們將這四張卡片背面朝上,洗勻放好,從中隨機抽取一張(不放回),再從中隨機抽取一張,請用列表或畫樹狀圖的方法求抽到的兩張卡片恰好是“共享出行”和“共享知識”的概率(這四張卡片分別用它們的編號,,,表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形OABC中,OA3,OC4,分別以OA、OC所在直線為x軸、y軸,建立平面直角坐標系,D是邊CB上的一個動點(不與C、B重合),反比例函數(shù)yk0)的圖象經過點D且與邊BA交于點E,作直線DE

1)當點D運動到BC中點時,求k的值;

2)求的值;

3)連接DA,當DAE的面積為時,求k值.

查看答案和解析>>

同步練習冊答案