【題目】如圖,在矩形ABCD中,點EAD上,且EC平分∠BED。

(1)BEC是否是等腰三角形?證明你的結論。

(2)若AB=1,∠ABE=450,求矩形ABCD的面積。

【答案】1△BEC是等腰三角形(2

【解析】試題分析:(1)求出∠DEC=∠ECB=∠BEC,推出BE=BC即可;

2)求出AE=AB=1,根據(jù)勾股定理求出BE即可.

解:(1△BEC是等腰三角形,

理由是:四邊形ABCD是矩形,

∴AD∥BC

∴∠DEC=∠BCE,

∵EC平分∠DEB

∴∠DEC=∠BEC,

∴∠BEC=∠ECB,

∴BE=BC,

△BEC是等腰三角形.

2四邊形ABCD是矩形,

∴∠A=90°

∵∠ABE=45°,

∴∠ABE=AEB=45°,

∴AB=AE=1,

由勾股定理得:BE==

BC=BE=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結論:

①2a+b=0;②a+c>b;③拋物線與x軸的另一個交點為(3,0);④abc>0.其中正確的結論的個數(shù)是( )

A.1個 B.2個 C.3個 D.4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列計算正確的是(

A.(x+y)2=x2+y2B.(x﹣y)2=x2﹣2xy﹣y2

C.(x+1)(x﹣1)=x2﹣1 D.(x﹣1)2=x2﹣1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將n個邊長都為2cm的正方形按如圖所示的方法擺放,點A1、A2、…、AN分別是正方形的中心,則2016個這樣的正方形重疊部分(陰影部分)的面積和為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小敏為了解本市的空氣質量情況,從環(huán)境監(jiān)測網(wǎng)隨機抽取了若干天的空氣質量情況作為樣本進行統(tǒng)計,繪制了如圖所示的條形圖和扇形圖(部分信息未給出).

請你根據(jù)圖中提供的信息,解答下列問題:

(1)計算被抽取的天數(shù).

(2)請補全條形圖,并求扇形圖中表示優(yōu)的扇形的圓心角度數(shù).

(3)請估計該市這一年(365天)達到優(yōu)和良的總天數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商店欲購進甲、乙兩種商品,已知甲的進價是乙的進價的一半,進3件甲商品和1件乙商品恰好用200元.甲、乙兩種商品的售價每件分別為80元、130元,該商店決定用不少于6710元且不超過6810元購進這兩種商品共100件.

(1)求這兩種商品的進價;

(2)該商店有幾種進貨方案?哪種進貨方案可獲得最大利潤,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在2015年4月18日濰坊國際風箏節(jié)開幕上,小敏同學在公園廣場上放風箏,如圖風箏從A處起飛,幾分鐘后便飛達C處,此時,在AQ延長線上B處的小亮同學,發(fā)現(xiàn)自己的位置與風箏和廣場邊旗桿PQ的頂點P在同一直線上.

(1)已知旗桿高為10米,若在B處測得旗桿頂點P的仰角為30°,A處測得點P的仰角為45°,試求A、B之間的距離;

(2)在(1)的條件下,若在A處背向旗桿又測得風箏的仰角為75°,繩子在空中視為一條線段,求繩子AC為多少米?(結果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC的角平分線BD,CE相交于點P.

(1)如果A=80,求BPC= .

(2)如圖,過點P作直線MNBC,分別交ABAC于點MN,試求MPB+NPC的度數(shù)(用含A的代數(shù)式表示) .

(3)將直線MN繞點P旋轉。

(i)當直線MNABAC的交點仍分別在線段ABAC上時,如圖,試探索MPB,NPCA三者之間的數(shù)量關系,并說明你的理由。

(ii)當直線MNAB的交點仍在線段AB,而與AC的交點在AC的延長線上時,如圖,試問(i)MPB,NPC,A三者之間的數(shù)量關系是否仍然成立?若成立,請說明你的理由;若不成立,請給出MPBNPC,A三者之間的數(shù)量關系,并說明你的理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知|a+3|+(b-1)2=0,3a+b=__________

查看答案和解析>>

同步練習冊答案