科目: 來源: 題型:
【題目】如圖,△ABC為⊙O內(nèi)接等邊三角形,將△ABC繞圓心O旋轉(zhuǎn)30°到△DEF處,連接AD、AE,則∠EAD的度數(shù)為( )
A.150°B.135°C.120°D.105°
查看答案和解析>>
科目: 來源: 題型:
【題目】已知二次函數(shù)y=ax2+2ax+a2+3(其中x是自變量),當x≤﹣2時,y隨x的增大而增大,且﹣2≤x≤1時,y的最大值為5,則a的值為( 。
A.﹣1B.2C.﹣1或2D.或﹣
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線與軸交于,兩點(點在點的左側(cè)),與軸交于點,對稱軸與軸交于點,點在拋物線上.
(1)求直線的解析式.
(2)點為直線下方拋物線上的一點,連接,.當的面積最大時,連接,,點是線段的中點,點是線段上的一點,點是線段上的一點,求的最小值.
(3)點是線段的中點,將拋物線與軸正方向平移得到新拋物線,經(jīng)過點,的頂點為點,在新拋物線的對稱軸上,是否存在點,使得為等腰三角形?若存在,直接寫出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線交軸、兩點(在的左側(cè)),且,,與軸交于,拋物線的頂點坐標為.
(1)求、兩點的坐標;
(2)求拋物線的解析式;
(3)過點作直線軸,交軸于點,點是拋物線上、兩點間的一個動點(點不與、兩點重合),、與直線分別交于點、,當點運動時,是否為定值?若是,試求出該定值;若不是,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,是的弦,過的中點作,垂足為,過點作直線交的延長線于點,使得.
(1)求證:是的切線;
(2)若,,求的邊上的高.
(3)在(2)的條件下,求的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】(2016·荊門中考)如圖,天星山山腳下西端A處與東端B處相距800(1+)米,小軍和小明同時分別從A處和B處向山頂C勻速行走.已知山的西端的坡角是45°,東端的坡角是30°,小軍的行走速度為米/秒.若小明與小軍同時到達山頂C處,則小明的行走速度是多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:如圖,反比例函數(shù)y= 的圖象與一次函數(shù)y=x+b的圖象交
于點A(1,4)、點B(-4,n).
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求△OAB的面積;
(3)直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量x的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,兩個轉(zhuǎn)盤中指針落在每個數(shù)字上的機會相等,現(xiàn)同時轉(zhuǎn)動、兩個轉(zhuǎn)盤,停止后,指針各指向一個數(shù)字.小力和小明利用這兩個轉(zhuǎn)盤做游戲,若兩數(shù)之積為非負數(shù)則小力勝;否則,小明勝.
(1)畫樹狀圖或列表求出各人獲勝的概率。
(2)這個游戲公平嗎?說說你的理由
查看答案和解析>>
科目: 來源: 題型:
【題目】已知,點M為二次函數(shù)y=x2+2bx+3c圖象的頂點,一次函數(shù)y=kx﹣3(k>0)分別交x軸,y軸于點A,B.
(1)若b=1,c=1,判斷頂點M是否在直線y=2x+1上,并說明理由;
(2)若該二次函數(shù)圖象經(jīng)過點C(1,﹣4),也經(jīng)過點A,B,且滿足kx﹣3<x2+2bx+3c,求該一次函數(shù)解析式,并直接寫出自變量x的取值范圍;
(3)設(shè)點P坐標為(m,n)在二次函數(shù)y=x2+2bx+3c上,當﹣2≤m≤2時,b﹣24≤n≤2b+4,試問:當b≥2或b≤﹣2時,對于該二次函數(shù)中任意的自變量x,函數(shù)值y是否始終大于﹣40?請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知拋物線y=x2﹣4與x軸交于點A,B(點A位于點B的左側(cè)),C為頂點,直線y=x+m經(jīng)過點A,與y軸交于點D.
(1)求線段AD的長;
(2)平移該拋物線得到一條新拋物線,設(shè)新拋物線的頂點為C′.若新拋物線經(jīng)過點D,并且新拋物線的頂點和原拋物線的頂點的連線CC′平行于直線AD,求新拋物線對應(yīng)的函數(shù)表達式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com