橢圓兩焦點(diǎn)為 F1(-4,0),F(xiàn)2(4,0),P在橢圓上,若△PF1F2的面積的最大值為12,則該橢圓的標(biāo)準(zhǔn)方程為


  1. A.
    數(shù)學(xué)公式+數(shù)學(xué)公式=1
  2. B.
    數(shù)學(xué)公式+數(shù)學(xué)公式=1
  3. C.
    數(shù)學(xué)公式+數(shù)學(xué)公式=1
  4. D.
    數(shù)學(xué)公式+數(shù)學(xué)公式=1
A
分析:由橢圓圖象可知,當(dāng)△PF1F2的面積的最大值為12,P與短軸頂點(diǎn)重合,根據(jù)三角形面積公式可得,,所以b=3,由此能夠推導(dǎo)出該橢圓的標(biāo)準(zhǔn)方程.
解答:由橢圓圖象可知,
當(dāng)△PF1F2的面積的最大值為12,P與短軸頂點(diǎn)重合.
根據(jù)三角形面積公式,,所以 b=3,
由 a2=b2+c2得,a=5,
∴橢圓的標(biāo)準(zhǔn)方程為
故選A.
點(diǎn)評(píng):本題考查橢圓的性質(zhì)和應(yīng)用,解題時(shí)要注意合理地選用公式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•肇慶一模)短軸長(zhǎng)為
5
,離心率e=
2
3
的橢圓兩焦點(diǎn)為F1,F(xiàn)2,過F1作直線交橢圓于A、B兩點(diǎn),則△ABF2的周長(zhǎng)為
6
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•門頭溝區(qū)一模)橢圓兩焦點(diǎn)為 F1(-4,0),F(xiàn)2(4,0),P在橢圓上,若△PF1F2的面積的最大值為12,則該橢圓的標(biāo)準(zhǔn)方程為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若橢圓兩焦點(diǎn)為F1(-4,0)、F2(4,0),橢圓的弦AB過點(diǎn)F1,且△ABF2的周長(zhǎng)為20,那么該橢圓的方程為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若橢圓兩焦點(diǎn)為F1(-4,0),F(xiàn)2(4,0)點(diǎn)P在橢圓上,且△PF1F2的面積的最大值為12,則此橢圓的方程是
x2
25
+
y2
9
=1
x2
25
+
y2
9
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓兩焦點(diǎn)為F1(-3,0),F(xiàn)2(3,0),P在橢圓上,若△PF1F2的面積最大值為12,則該橢圓的離心率是
3
5
3
5

查看答案和解析>>

同步練習(xí)冊(cè)答案