2.三角形ABC的三頂點(diǎn)A(1,1),B(9,3),C(2,5),求角∠BAC的角平分線所在直線方程.

分析 設(shè)∠BAC的平分線所在直線的斜率為k,由條件求得AB、AC的斜率,利用一條直線到另一條直線的角的計(jì)算公式求得k的值,用點(diǎn)斜式求得∠A的平分線所在直線的方程.

解答 解:如圖所示,
設(shè)∠A的平分線所在直線AD的斜率為k,
由于KAB=$\frac{3-1}{9-1}$=$\frac{1}{4}$,KAC=$\frac{5-1}{2-1}$=4,
根據(jù)題意可得$\frac{k-\frac{1}{4}}{1+\frac{k}{4}}$=$\frac{4-k}{1+4k}$,
解得k=1,或k=-1(不符合題意$\frac{1}{4}$<k<4,舍去),
故∠BAC的平分線所在直線的方程為 y-1=1•(x-4),
化簡(jiǎn)可得x-y-3=0.

點(diǎn)評(píng) 本題主要考查了直線的斜率公式,一條直線到另一條直線的角的計(jì)算公式以及點(diǎn)斜式求直線的方程問題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某校為指導(dǎo)學(xué)生合理選擇文理科的學(xué)習(xí),根據(jù)數(shù)理綜合測(cè)評(píng)成績(jī),按6分為滿分進(jìn)行折算后,若學(xué)生成績(jī)小于m分別建議選擇文科,不低于m分則建議選擇理科(這部分學(xué)生稱為候選理科生).現(xiàn)從該校高一隨機(jī)抽取500名學(xué)生的數(shù)理綜合成績(jī)作為樣本,整理得到分?jǐn)?shù)的頻率分布直方圖(如圖所示).
(Ⅰ)求直方圖中的t值;
(Ⅱ)根據(jù)此次測(cè)評(píng),為使80%以上的學(xué)生選擇理科,整理m至多定為多少?
(Ⅲ)若m=4,試估計(jì)該校高一學(xué)生中候選理科學(xué)生的平均成績(jī)?(精確到0.01)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知雙曲線x2+my2=1的右焦點(diǎn)為F(2,0),m的值為$-\frac{1}{3}$,漸進(jìn)線方程$y=±\sqrt{3}x$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若變量x,y滿足約束條件$\left\{\begin{array}{l}{x+2y≥0}\\{x-y≤0}\\{x-2y+2≥0}\end{array}\right.$則z=$\frac{y}{x-3}$的最小值等于( 。
A.-4B.-2C.-$\frac{1}{8}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=(sin$\frac{x}{2}$+cos$\frac{x}{2}$)2-2$\sqrt{3}$cos2$\frac{x}{2}$+$\sqrt{3}$.
(1)求f(x)的單調(diào)區(qū)間;
(2)求f(x)在[0,π]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)y=f(x)的反函數(shù)為y=f-1(x),則函數(shù)y=f(-x)與y=-f-1(x)的圖象( 。
A.關(guān)于y軸對(duì)稱B.關(guān)于原點(diǎn)對(duì)稱
C.關(guān)于直線x+y=0對(duì)稱D.關(guān)于直線x-y=0對(duì)稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左頂點(diǎn)與拋物線y2=2px(p>0)的焦點(diǎn)的距離為3,且雙曲線的一條漸近線與拋物線的準(zhǔn)線的交點(diǎn)坐標(biāo)為(-1,1),則雙曲線的標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{16}-\frac{{y}^{2}}{16}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在某產(chǎn)品尺寸的頻率分布直方圖中,與其中一組[a,b)對(duì)應(yīng)的小長方形高是h.若該組的頻率為m,則|a-b|=$\frac{m}{h}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知$\overrightarrow{a}$=(λ+1,0,2λ),$\overrightarrow$=(6,2μ-1,2),且$\overrightarrow{a}$∥$\overrightarrow$,則λμ=$\frac{1}{10}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案