【題目】設(shè)橢圓的左、右焦點(diǎn)分別為,,上頂點(diǎn)為,過(guò)點(diǎn)垂直的直線(xiàn)交軸負(fù)半軸于點(diǎn),且,過(guò),三點(diǎn)的圓恰好與直線(xiàn)相切.

求橢圓的方程;

過(guò)右焦點(diǎn)作斜率為的直線(xiàn)與橢圓交于兩點(diǎn),問(wèn)在軸上是否存在點(diǎn),使得以為鄰邊的平行四邊形是菱形?如果存在,求出的取值范圍;如果不存在,說(shuō)明理由.

【答案】(1) ;(2)存在, .

【解析】

設(shè)點(diǎn)的坐標(biāo)為,且,利用以及得出點(diǎn)的坐標(biāo),利用外接圓圓心到該直線(xiàn)的距離等于半徑,可求出的值,進(jìn)而得出的值,從而得出橢圓的方程;,得出,設(shè)點(diǎn)、,將直線(xiàn)l的方程與橢圓的方程聯(lián)立,利用韋達(dá)定理,求出線(xiàn)段的中點(diǎn)的坐標(biāo),將條件“以為鄰邊的平行四邊形是菱形”轉(zhuǎn)化為,得出這兩條直線(xiàn)的斜率之積為,然后得出的表達(dá)式,利用不等式的性質(zhì)可求出實(shí)數(shù)的取值范圍.

設(shè)橢圓C的焦距為,則點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,設(shè)點(diǎn)Q的坐標(biāo)為,且,

如下圖所示,

,,

,則,所以,,則點(diǎn)Q的坐標(biāo)為

直線(xiàn)與直線(xiàn)AQ垂直,且點(diǎn),所以,,,

,得,則

為直角三角形,且為斜邊,

線(xiàn)段的中點(diǎn)為,的外接圓半徑為2c

由題意可知,點(diǎn)到直線(xiàn)的距離為,

所以,,

因此,橢圓C的方程為.

由題意知,直線(xiàn)的斜率,并設(shè),則直線(xiàn)l的方程為,

設(shè)點(diǎn)、

將直線(xiàn)的方程與橢圓C的方程聯(lián)立

消去x,

由韋達(dá)定理得

,

所以,線(xiàn)段MN的中點(diǎn)為點(diǎn)

由于以PM,PN為鄰邊的平行四邊形是菱形,則,則,所以,

由兩點(diǎn)連線(xiàn)的斜率公式可得,得

由于,則,所以,,所以,

因此,在x軸上存在點(diǎn),使得以PM,PN為鄰邊的平行四邊形是菱形,

且實(shí)數(shù)m的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓經(jīng)過(guò)點(diǎn),離心率為,左、右焦點(diǎn)分別為

(1)求橢圓的方程;

(2)若直線(xiàn)與橢圓交于A,B兩點(diǎn),與以為直徑的圓交于C,D兩點(diǎn),的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某人事部門(mén)對(duì)參加某次專(zhuān)業(yè)技術(shù)考試的100人的成績(jī)進(jìn)行了統(tǒng)計(jì),繪制的頻率分布直方圖如圖所示.規(guī)定80分以上者晉級(jí)成功,否則晉級(jí)失敗(滿(mǎn)分為100分).

(1)求圖中的值;

(2)估計(jì)該次考試的平均分 (同一組中的數(shù)據(jù)用該組的區(qū)間中點(diǎn)值代表);

(3)根據(jù)已知條件完成下面2×2列聯(lián)表,并判斷能否有85%的把握認(rèn)為“晉級(jí)成功”與性別有關(guān).

晉級(jí)成功

晉級(jí)失敗

合計(jì)

16

50

合計(jì)

參考公式:,其中

0.40

0.25

0.15

0.10

0.05

0.025

0.780

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某人設(shè)計(jì)一項(xiàng)單人游戲,規(guī)則如下:先將一棋子放在如圖所示正方形(邊長(zhǎng)為2個(gè)單位)的頂點(diǎn)處,然后通過(guò)擲骰子來(lái)確定棋子沿正方形的邊按逆時(shí)針?lè)较蛐凶叩膯挝,如果擲出的點(diǎn)數(shù)為,則棋子就按逆時(shí)針?lè)较蛐凶?/span>個(gè)單位,一直循環(huán)下去.則某人拋擲三次骰子后棋子恰好又回到點(diǎn)處的所有不同走法共有( )

A. 22種 B. 24種 C. 25種 D. 27種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】男運(yùn)動(dòng)員6名,女運(yùn)動(dòng)員4名,其中男女隊(duì)長(zhǎng)各1.選派5人外出比賽,在下列情形中各有多少種選派方法?

1)男運(yùn)動(dòng)員3名,女運(yùn)動(dòng)員2名;

2)至少有1名女運(yùn)動(dòng)員;

3)隊(duì)長(zhǎng)中至少有1人參加;

4)既要有隊(duì)長(zhǎng),又要有女運(yùn)動(dòng)員.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),,其中.

1)當(dāng)時(shí),求的單調(diào)區(qū)間;

2)若存在,使得不等式成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】物線(xiàn)的焦點(diǎn)為,已知點(diǎn)為拋物線(xiàn)上的兩個(gè)動(dòng)點(diǎn),且滿(mǎn)足,過(guò)弦的中點(diǎn)作該拋物線(xiàn)準(zhǔn)線(xiàn)的垂線(xiàn),垂足為,則的最小值為  

A. B. 1 C. D. 2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給定下列四個(gè)命題

若一個(gè)平面內(nèi)的兩條直線(xiàn)與另一個(gè)平面都平行,那么這兩個(gè)平面相互平行;

若一條直線(xiàn)和兩個(gè)互相垂直的平面中的一個(gè)平面垂直,那么這條直線(xiàn)一定平行于另一個(gè)平面;

若一條直線(xiàn)和兩個(gè)平行平面中的一個(gè)平面垂直,那么這條直線(xiàn)也和一個(gè)平面垂直;

若兩個(gè)平面垂直,那么一個(gè)平面內(nèi)與它們的交線(xiàn)不垂直的直線(xiàn)與另一個(gè)平面也不垂直,

其中,真命題的個(gè)數(shù)是  

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)|3x2|.

(1)解不等式f(x)<4|x1|;

(2)已知mn1(mn>0),若|xa|f(x)≤(a>0)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案