18.求由直線x=-2,x=2,y=0及曲線y=x2-x所圍成的圖形的面積.

分析 根據(jù)題意,求出積分的上下限,利用定積分的幾何意義表示圖形面積,然后計算即可

解答 解:令y=x2-x=0,解得x=0或x=1,
故由直線x=-2,x=2,y=0及曲線y=x2-x所圍成的圖形的面積
S=${∫}_{-2}^{0}$(x2-x)dx-${∫}_{0}^{1}$(x2-x)dx+${∫}_{1}^{2}$(x2-x)dx,
=($\frac{1}{3}$x3-$\frac{1}{2}$x2)|${\;}_{-2}^{0}$-($\frac{1}{3}$x3$\frac{1}{2}$x2)|${\;}_{0}^{1}$+($\frac{1}{3}$x3-$\frac{1}{2}$x2)|${\;}_{1}^{2}$,
=0-(-$\frac{8}{3}$-2)-($\frac{1}{3}$-$\frac{1}{2}$-0)+($\frac{8}{3}$-2)-($\frac{1}{3}$-$\frac{1}{2}$)
=$\frac{17}{3}$

點評 本題考查利用定積分的幾何意義求曲邊梯形的面積;明確意義后確定積分的上限和下限是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{-1},x≤a}\\{{x}^{-2},x>a}\end{array}\right.$,其中a≠0,若存在實數(shù)b,使得函數(shù)g(x)=f(x)-b有兩個零點,則a的取值范圍是(  )
A.(0,1)B.(-∞,0)∪(0,1)C.(-∞,0)∪(0,2)D.(-1,0)∪(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.袋中有5個球,其中3個白球,2個紅球,從袋中任取出2個球,求下列事件的概率:
(1)A:取出的2個球都是白球;
(2)B:取出的2個球中1個是白球,另1個是紅球.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=aln(1+x)+x2-10x在點(2,f(2))的切線與直線3x-2y-1=0垂直.
(1)求實數(shù)a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)若直線y=b與函數(shù)y=f(x)的圖象有3個交點,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.曲線xy=1的一個參數(shù)方程是( 。
A.$\left\{\begin{array}{l}x={t^{\frac{1}{2}}}\\ y={t^{-\frac{1}{2}}}\end{array}\right.$B.$\left\{\begin{array}{l}x={2^t}\\ y={2^{-t}}\end{array}\right.$
C.$\left\{\begin{array}{l}x=log_2t\\ y=log_t2\end{array}\right.$D.$\left\{\begin{array}{l}x=sinα\\ y=\frac{1}{sinα}\end{array}\right.$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,四棱錐P-ABCD的底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC,E是PC的中點.
(1)證明PA∥平面BDE;
(2)證明:DE⊥面PBC;
(3)求二面角B-DE-C的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.如圖的程序框圖輸出的結(jié)果是20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)函數(shù)g(x)=(x-1)emx-mx2,f(x)=g(x)+(2-x)emx,(其中m∈R).
( I)當(dāng)m=1時,求函數(shù)g(x)的極值;
( II)求證:存在m∈(0,1),使得f(x)≥0在(0,+∞)內(nèi)恒成立,且方程f(x)=0在(0,+∞)內(nèi)有唯一解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.?dāng)?shù)列{an}滿足a1=1,且對任意的n∈N*都有an+1=an+n+1,則數(shù)列{$\frac{1}{a_n}}$}的 前100項的和為( 。
A.$\frac{101}{100}$B.$\frac{200}{101}$C.$\frac{99}{100}$D.$\frac{101}{200}$

查看答案和解析>>

同步練習(xí)冊答案