13.曲線xy=1的一個(gè)參數(shù)方程是( 。
A.$\left\{\begin{array}{l}x={t^{\frac{1}{2}}}\\ y={t^{-\frac{1}{2}}}\end{array}\right.$B.$\left\{\begin{array}{l}x={2^t}\\ y={2^{-t}}\end{array}\right.$
C.$\left\{\begin{array}{l}x=log_2t\\ y=log_t2\end{array}\right.$D.$\left\{\begin{array}{l}x=sinα\\ y=\frac{1}{sinα}\end{array}\right.$

分析 將A、B、C、D四個(gè)選項(xiàng)的參數(shù)方程一一驗(yàn)證xy=1是否成立,從而求解.

解答 解:A、B、C、D四個(gè)選項(xiàng)的參數(shù)方程,均可得到xy=1,
但是A,B,x>0,y>0;D,|x|≤1,故不滿足.
故選:C.

點(diǎn)評(píng) 此題考查參數(shù)方程與普通方程的區(qū)別和聯(lián)系,兩者要會(huì)互相轉(zhuǎn)化,根據(jù)實(shí)際情況選擇不同的方程進(jìn)行求解,這也是每年高考必考的熱點(diǎn)問題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)2階方矩陣A=$(\begin{array}{l}{a}&\\{c}&zhvhpfp\end{array})$,則矩陣A所對(duì)應(yīng)的矩陣變換為:$(\begin{array}{l}{x}\\{y}\end{array})$=$(\begin{array}{l}{a}&\\{c}&b9tdvjr\end{array})$$(\begin{array}{l}{x′}\\{y′}\end{array})$,其意義是把點(diǎn)P(x,y)變換為點(diǎn)Q(x′,y′),矩陣A叫做變換矩陣.
(1)當(dāng)變換矩陣A1=$(\begin{array}{l}{1}&{2}\\{2}&{1}\end{array})$時(shí),點(diǎn)P1(-1,1),P2(-3,1)經(jīng)矩陣變換后得到點(diǎn)分別是Q1,Q2,求過點(diǎn)Q1,Q2的直線的點(diǎn)向式方程.
(2)當(dāng)變換矩陣A2=$(\begin{array}{l}{1}&{3}\\{8}&{-1}\end{array})$時(shí),若直線上的任意點(diǎn)P(x,y)經(jīng)矩陣變換后得到的點(diǎn)Q仍在該直線上,求直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如圖,在圓O中,已知弦長(zhǎng)AB=2,則 $\overrightarrow{AO}•\overrightarrow{AB}$=(  )
A.1B.2C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知直線l:y=kx-2,圓C:x2+y2-8x+4y-16=0.
(Ⅰ)若k=$\frac{2}{{\sqrt{3}}}$,請(qǐng)判斷直線l與圓C的位置關(guān)系;
(Ⅱ)當(dāng)|k|≥1時(shí),直線l能否將圓C分割成弧長(zhǎng)的比值為$\frac{1}{3}$的兩段圓?為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)=4x2-1,若數(shù)列{${\frac{1}{f(n)$}前n項(xiàng)和為Sn,則S2018的值為( 。
A.$\frac{2017}{2018}$B.$\frac{2016}{2018}$C.$\frac{4036}{4037}$D.$\frac{2018}{4037}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.求由直線x=-2,x=2,y=0及曲線y=x2-x所圍成的圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=ax2+(b-1)x+1(a,b∈R,a>0).
(1)若f(1)=0,且對(duì)任意x∈R,都有f(2-x)=f(2+x),求f(x)的解析式;
(2)已知x1,x2為函數(shù)f(x)的兩個(gè)零點(diǎn),且x2-x1=2,當(dāng)x∈(x1,x2)時(shí),g(x)=-f(x)+2(x2-x)的最大值為h(a),當(dāng)a≥2時(shí),求h(a)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.化簡(jiǎn):$\frac{2}{3}$[(4$\overrightarrow{a}$-3$\overrightarrow$)+$\frac{1}{3}$$\overrightarrow$-$\frac{1}{4}$(6$\overrightarrow{a}$-7$\overrightarrow$)]=$\frac{5}{3}$$\overrightarrow{a}$-$\frac{11}{18}$$\overrightarrow$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在單位圓中,一條弦AB的長(zhǎng)度為$\sqrt{3}$,則該弦AB所對(duì)的弧長(zhǎng)l為(  )
A.$\frac{2}{3}$πB.$\frac{3}{4}$πC.$\frac{5}{6}$πD.π

查看答案和解析>>

同步練習(xí)冊(cè)答案