【題目】如圖,在正方體ABCD-A1B1C1D1中.

(I)求證:AC⊥BD1

(Ⅱ)是否存在直線與直線AA1,CC1,BD1都相交?若存在,請(qǐng)你在圖中畫出兩條滿足條件的直線(不必說(shuō)明畫法及理由);若不存在,請(qǐng)說(shuō)明理由.

【答案】(I)詳見解析;(II)存在,圖形見解析.

【解析】

(Ⅰ)連結(jié),推導(dǎo)出,,由此能證明

(Ⅱ)作出滿足條件的直線一定在平面中,且過(guò)的中點(diǎn)并與直線,相交

(Ⅰ)證明:如圖,連結(jié)BD

∵正方體ABCD-A1B1C1D1

D1D⊥平面ABCD

AC平面ABCD,∴D1DAC

∵四邊形ABCD是正方形,∴ACBD

BDD1D=D,∴AC⊥平面BDD1

BD1平面BDD1,∴ACBD1

(Ⅱ)存在.答案不唯一,

作出滿足條件的直線一定在平面ACC1A1中,

且過(guò)BD1的中點(diǎn)并與直線A1A,C1C相交.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲,乙,丙三位學(xué)生獨(dú)立地解同一道題,甲做對(duì)的概率為 ,乙,丙做對(duì)的概率分別為m,n(m>n),且三位學(xué)生是否做對(duì)相互獨(dú)立.記ξ為這三位學(xué)生中做對(duì)該題的人數(shù),其分布列為:

ξ

0

1

2

3

P

a

b


(1)求至少有一位學(xué)生做對(duì)該題的概率;
(2)求m,n的值;
(3)求ξ的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地區(qū)2007年至2013年農(nóng)村居民家庭人均純收入y(單位:千元)的數(shù)據(jù)如下表:

年 份

2007

2008

2009

2010

2011

2012

2013

年份代號(hào)t

1

2

3

4

5

6

7

人均純收入y

2.9

3.3

3.6

4.4

4.8

5.2

5.9

(1)求y關(guān)于t的線性回歸方程;

(2)利用(1)中的回歸方程,分析2007年至2013年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測(cè)該地區(qū)2015年農(nóng)村居民家庭人均純收入.

附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:

,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】四棱錐P-ABCD中,AD⊥面PAB,BC⊥面PAB,底面ABCD為梯形,AD=4,BC=8,AB=6,∠APD=∠CPB,滿足上述條件的四棱錐的頂點(diǎn)P的軌跡是(  )

A. 圓的一部分 B. 橢圓的一部分

C. 球的一部分 D. 拋物線的一部分

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=lnx+ax在點(diǎn)(t,f(t))處切線方程為y=2x﹣1
(1)求a的值
(2)若 ,證明:當(dāng)x>1時(shí),
(3)對(duì)于在(0,1)中的任意一個(gè)常數(shù)b,是否存在正數(shù)x0 , 使得:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=log2x+a).

(Ⅰ)當(dāng)a=1時(shí),若fx)+fx-1)>0成立,求x的取值范圍;

(Ⅱ)若定義在R上奇函數(shù)gx)滿足gx+2)=-gx),且當(dāng)0≤x≤1時(shí),gx)=fx),求gx)在[-3,-1]上的解析式,并寫出gx)在[-3,3]上的單調(diào)區(qū)間(不必證明);

(Ⅲ)對(duì)于(Ⅱ)中的gx),若關(guān)于x的不等式g)≥g(-)在R上恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)需要建造一個(gè)容積為8立方米,深度為2米的無(wú)蓋長(zhǎng)方體水池,已知池壁的造價(jià)為每平方米100元,池底造價(jià)為每平方米300元,設(shè)水池底面一邊長(zhǎng)為米,水池總造價(jià)為元,求關(guān)于的函數(shù)關(guān)系式,并求出水池的最低造價(jià).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了調(diào)查每天人們使用手機(jī)的時(shí)間,我校某課外興趣小組在天府廣場(chǎng)隨機(jī)采訪男性、女性用戶各50 名,其中每天玩手機(jī)超過(guò)6小時(shí)的用戶列為“手機(jī)控”,否則稱其為“非手機(jī)控”,調(diào)查結(jié)果如下:

手機(jī)控

非手機(jī)控

合計(jì)

男性

26

24

50

女性

30

20

50

合計(jì)

56

44

100


(1)根據(jù)以上數(shù)據(jù),能否有60%的把握認(rèn)為“手機(jī)控”與“性別”有關(guān)?
(2)現(xiàn)從調(diào)查的女性用戶中按分層抽樣的方法選出5人,求所抽取5人中“手機(jī)控”和“非手機(jī)控”的人數(shù);
(3)從(2)中抽取的5人中再隨機(jī)抽取3人,記這3人中“手機(jī)控”的人數(shù)為X,試求X的分布列與數(shù)學(xué)期望. 參考公式:
參考數(shù)據(jù):

P(K2≥k0

0.50

0.40

0.25

0.05

0.025

0.010

k0

0.456[

0.708

1.321

3.840

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方體中,點(diǎn)是線段上的動(dòng)點(diǎn),則下列說(shuō)法錯(cuò)誤的是( )

A. 無(wú)論點(diǎn)上怎么移動(dòng),異面直線所成角都不可能是

B. 無(wú)論點(diǎn)上怎么移動(dòng),都有

C. 當(dāng)點(diǎn)移動(dòng)至中點(diǎn)時(shí),才有與相交于一點(diǎn),記為點(diǎn),且

D. 當(dāng)點(diǎn)移動(dòng)至中點(diǎn)時(shí),直線與平面所成角最大且為

查看答案和解析>>

同步練習(xí)冊(cè)答案
闂傚倸鍊烽懗鑸电仚婵°倗濮寸换姗€鐛箛娑欐櫢闁跨噦鎷� 闂傚倸鍊搁崐鎼佸磹閹间礁纾诲┑鐘叉搐缁狀垶鏌ㄩ悤鍌涘