已知向量
n
=(6,3,4)和直線垂直,點A(2,0,2)在直線上,求點(-4,0,2)到直線的距離.
考點:空間兩點間的距離公式
專題:空間向量及應(yīng)用
分析:利用空間向量法即可得到結(jié)論.
解答: 解:∵點A(2,0,2)在直線上,點M(-4,0,2),
AM
=(-6,0,0),
∵向量
n
=(6,3,4)和直線垂直,
∴M(-4,0,2)到直線的距離d,等于AM在
n
上的投影的絕對值.
即:d=
|
AM
n
|
|
n
|
=
36
62+32+42
=
36
61
=
36
61
61
點評:本題主要考查空間兩點間的距離的求解,利用空間向量法是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=1,a2=3,an+2=an+1+
1
an
,則a5=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在正三棱柱ABC-A1B1C1(底面是正三角形的直棱柱)中,AA1=1,AB=
2
,AB1與BC1所成的角為( 。
A、
π
2
B、
π
4
C、
π
3
D、
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知角θ的終邊所在直線上有一點P(3m,4m)(m>0)
求(1)求
sinθ-cosθ
1-tanθ
的值;
(2)求cos(π-θ)+sin(θ+
π
4
)•sin(
π
4
-θ)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,底面為直角梯形的四棱錐P-ABCD中,AD∥BC,∠ABC=90°,PA⊥面ABCD,PA=3,AD=2,AB=2
3
,BC=6.
(1)求證:面PBD⊥面PAC;
(2)在邊BC上是否存在點M(異于B,C)使二面角P-DM-B的大小為60°?若存在,請指出M的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={-1,5},B={-1,1},則A∩B=(  )
A、{-1}
B、{5,-1}
C、{1,-1}
D、{-1,1,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

a
=(1,
3
),|
b
|=4  且(
a
+
b
)⊥
a
  則
a
b
的夾角為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在棱長為1的正方體ABCD-A1B1C1D1中.
(1)若點P是側(cè)棱CC1的中點,求C到平面APD1的距離.
(2)在側(cè)棱CC1上是否存在一個點P,使得直線AP與平面BDD1B1所成角的正切值
為3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)為定義在R上的偶函數(shù),x≥0,f(x)=x2+4x+3,
(1)求函數(shù)f(x)的解析式;
(2)寫出函數(shù)f(x)在R上的單調(diào)區(qū)間,并用定義證明.

查看答案和解析>>

同步練習(xí)冊答案