【題目】設(shè)關(guān)于x的函數(shù)y=2cos2x-2acosx-(2a+1)的最小值為f(a),試確定滿(mǎn)足f(a)=的a的值,并求此時(shí)函數(shù)的最大值.
【答案】5
【解析】
試題先化為二次函數(shù)形式,再根據(jù)對(duì)稱(chēng)軸與定義區(qū)間位置關(guān)系確定最值取法,根據(jù)最小值為,解得a的值,代入最大值關(guān)系式可得最大值
試題解析:解 令cosx=t,t∈[-1,1],
則y=2t2-2at-(2a+1)
=2(t-)2--2a-1,
關(guān)于t的二次函數(shù)的對(duì)稱(chēng)軸是t=,
當(dāng)<-1,即a<-2時(shí),
函數(shù)y在t∈[-1,1]上是單調(diào)遞增,
所以f(a)=f(-1)=1≠;
當(dāng)>1,即a>2時(shí),
函數(shù)y在t∈[-1,1]上是單調(diào)遞減,
所以f(a)=f(1)=-4a+1=,
解得a=,這與a>2矛盾;
當(dāng)-1≤≤1,即-2≤a≤2時(shí),
f(a)=--2a-1=,
即a2+4a+3=0,解得a=-1或a=-3,
因?yàn)椋?/span>2≤a≤2,所以a=-1.
所以y=2t2+2t+1,t∈[-1,1],所以當(dāng)t=1時(shí),
函數(shù)取得最大值ymax=2+2+1=5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一家保險(xiǎn)公司決定對(duì)推銷(xiāo)員實(shí)行目標(biāo)管理,即給推銷(xiāo)員確定一個(gè)具體的銷(xiāo)售目標(biāo),確定的銷(xiāo)售目標(biāo)是否合適,直接影響到公司的經(jīng)濟(jì)效益,如果目標(biāo)定得過(guò)高,多數(shù)推銷(xiāo)員完不成任務(wù),會(huì)使推銷(xiāo)員失去信心:如果目標(biāo)定得太低,將不利于挖掘推銷(xiāo)員的工作潛力,下面一組數(shù)據(jù)是部分推銷(xiāo)員的月銷(xiāo)售額(單位:千元):
19.58 16.11 16.45 20.45 20.24 21.66 22.45 18.22 12.34
19.35 20.55 17.45 18.78 17.96 19.91 18.12 14.65 14.78
16.78 18.78 18.29 18.51 17.86 19.58 19.21 18.55 16.34
15.54 17.55 14.89 18.94 17.43 17.14 18.02 19.98 17.88
17.32 19.35 15.45 19.58 13.45 21.34 14.00 18.42 23.00
17.52 18.51 17.16 24.56 25.14
請(qǐng)根據(jù)這組樣本數(shù)據(jù)提出使65%的職工能夠完成銷(xiāo)售指標(biāo)的建議.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】表示不超過(guò)的最大整數(shù),例,,.已知函數(shù),.
(1)求函數(shù)的定義域;
(2)求證:當(dāng)且時(shí),總有,并指出當(dāng)為何值時(shí)取等號(hào);
(3)解關(guān)于的不等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙、丙、丁、戊五位媽媽相約各帶一個(gè)小孩去觀看花卉展,她們選擇共享電動(dòng)車(chē)出行,每輛電動(dòng)車(chē)只能載兩人,其中孩子們表示都不坐自己媽媽的車(chē),甲的小孩一定要坐戊媽媽的車(chē),則她們坐車(chē)不同的搭配方式有( )
A. 種 B. 種 C. 種 D. 種
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某創(chuàng)業(yè)團(tuán)隊(duì)擬生產(chǎn)兩種產(chǎn)品,根據(jù)市場(chǎng)預(yù)測(cè),產(chǎn)品的利潤(rùn)與投資額成正比(如圖1),產(chǎn)品的利潤(rùn)與投資額的算術(shù)平方根成正比(如圖2).(注: 利潤(rùn)與投資額的單位均為萬(wàn)元)
(注:利潤(rùn)與投資額的單位均為萬(wàn)元)
(1)分別將兩種產(chǎn)品的利潤(rùn)、表示為投資額的函數(shù);
(2)該團(tuán)隊(duì)已籌集到10 萬(wàn)元資金,并打算全部投入兩種產(chǎn)品的生產(chǎn),問(wèn):當(dāng)產(chǎn)品的投資額為多少萬(wàn)元時(shí),生產(chǎn)兩種產(chǎn)品能獲得最大利潤(rùn),最大利潤(rùn)為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的是某池塘中的浮萍蔓延的面積與時(shí)間月)的關(guān)系有以下敘述:
①這個(gè)指數(shù)函數(shù)的底數(shù)是2;
②第5個(gè)月時(shí),浮萍的面積就會(huì)超過(guò)
③浮萍從蔓延到需要經(jīng)過(guò)1.5個(gè)月;
④浮萍每個(gè)月增加的面積都相等;
⑤若浮萍蔓延到所經(jīng)過(guò)的時(shí)間分別為則.其中正確的是
A. ①② B. ①②③④ C. ②③④⑤ D. ①②⑤
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為、,焦距為,直線(xiàn):與橢圓相交于、兩點(diǎn),關(guān)于直線(xiàn)的對(duì)稱(chēng)點(diǎn)在橢圓上.斜率為的直線(xiàn)與線(xiàn)段相交于點(diǎn),與橢圓相交于、兩點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求四邊形面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知兩個(gè)正數(shù)a,b滿(mǎn)足a+b=1
(1)求證:;
(2)若不等式對(duì)任意正數(shù)a,b都成立,求實(shí)數(shù)x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:,直線(xiàn)l:y=kx+b與橢圓C相交于A、B兩點(diǎn).
(1)如果k+b=﹣,求動(dòng)直線(xiàn)l所過(guò)的定點(diǎn);
(2)記橢圓C的上頂點(diǎn)為D,如果∠ADB=,證明動(dòng)直線(xiàn)l過(guò)定點(diǎn)P(0,﹣);
(3)如果b=﹣,點(diǎn)B關(guān)于y軸的對(duì)稱(chēng)點(diǎn)為B,向直線(xiàn)AB是過(guò)定點(diǎn)?如果是,求出定點(diǎn)的坐標(biāo);如果不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com