【題目】設(shè)關(guān)于x的函數(shù)y=2cos2x-2acosx-(2a+1)的最小值為f(a),試確定滿(mǎn)足f(a)=a的值,并求此時(shí)函數(shù)的最大值.

【答案】5

【解析】

試題先化為二次函數(shù)形式,再根據(jù)對(duì)稱(chēng)軸與定義區(qū)間位置關(guān)系確定最值取法,根據(jù)最小值為,解得a的值,代入最大值關(guān)系式可得最大值

試題解析:解 令cosxtt[-1,1],

y=2t2-2at-(2a+1)

=2(t)2-2a-1,

關(guān)于t的二次函數(shù)的對(duì)稱(chēng)軸是t,

當(dāng)<-1,即a<-2時(shí),

函數(shù)yt[-1,1]上是單調(diào)遞增,

所以f(a)=f(-1)=1≠;

當(dāng)>1,即a>2時(shí),

函數(shù)yt[-1,1]上是單調(diào)遞減,

所以f(a)=f(1)=-4a+1=,

解得a,這與a>2矛盾;

當(dāng)-1≤≤1,即-2≤a≤2時(shí),

f(a)=--2a-1=,

a2+4a+3=0,解得a=-1a=-3,

因?yàn)椋?/span>2≤a≤2,所以a=-1.

所以y=2t2+2t+1,t[-1,1],所以當(dāng)t=1時(shí),

函數(shù)取得最大值ymax=2+2+1=5.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一家保險(xiǎn)公司決定對(duì)推銷(xiāo)員實(shí)行目標(biāo)管理,即給推銷(xiāo)員確定一個(gè)具體的銷(xiāo)售目標(biāo),確定的銷(xiāo)售目標(biāo)是否合適,直接影響到公司的經(jīng)濟(jì)效益,如果目標(biāo)定得過(guò)高,多數(shù)推銷(xiāo)員完不成任務(wù),會(huì)使推銷(xiāo)員失去信心:如果目標(biāo)定得太低,將不利于挖掘推銷(xiāo)員的工作潛力,下面一組數(shù)據(jù)是部分推銷(xiāo)員的月銷(xiāo)售額(單位:千元):

19.58 16.11 16.45 20.45 20.24 21.66 22.45 18.22 12.34

19.35 20.55 17.45 18.78 17.96 19.91 18.12 14.65 14.78

16.78 18.78 18.29 18.51 17.86 19.58 19.21 18.55 16.34

15.54 17.55 14.89 18.94 17.43 17.14 18.02 19.98 17.88

17.32 19.35 15.45 19.58 13.45 21.34 14.00 18.42 23.00

17.52 18.51 17.16 24.56 25.14

請(qǐng)根據(jù)這組樣本數(shù)據(jù)提出使65%的職工能夠完成銷(xiāo)售指標(biāo)的建議.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】表示不超過(guò)的最大整數(shù),例,.已知函數(shù),.

(1)求函數(shù)的定義域;

(2)求證:當(dāng)時(shí),總有,并指出當(dāng)為何值時(shí)取等號(hào);

(3)解關(guān)于的不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙、丙、丁、戊五位媽媽相約各帶一個(gè)小孩去觀看花卉展,她們選擇共享電動(dòng)車(chē)出行,每輛電動(dòng)車(chē)只能載兩人,其中孩子們表示都不坐自己媽媽的車(chē),甲的小孩一定要坐戊媽媽的車(chē),則她們坐車(chē)不同的搭配方式有( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某創(chuàng)業(yè)團(tuán)隊(duì)擬生產(chǎn)兩種產(chǎn)品,根據(jù)市場(chǎng)預(yù)測(cè),產(chǎn)品的利潤(rùn)與投資額成正比(如圖1),產(chǎn)品的利潤(rùn)與投資額的算術(shù)平方根成正比(如圖2).(注: 利潤(rùn)與投資額的單位均為萬(wàn)元)

(注:利潤(rùn)與投資額的單位均為萬(wàn)元)

(1)分別將兩種產(chǎn)品的利潤(rùn)、表示為投資額的函數(shù);

(2)該團(tuán)隊(duì)已籌集到10 萬(wàn)元資金,并打算全部投入兩種產(chǎn)品的生產(chǎn),問(wèn):當(dāng)產(chǎn)品的投資額為多少萬(wàn)元時(shí),生產(chǎn)兩種產(chǎn)品能獲得最大利潤(rùn),最大利潤(rùn)為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示的是某池塘中的浮萍蔓延的面積與時(shí)間月)的關(guān)系有以下敘述:

①這個(gè)指數(shù)函數(shù)的底數(shù)是2;

②第5個(gè)月時(shí),浮萍的面積就會(huì)超過(guò)

③浮萍從蔓延到需要經(jīng)過(guò)1.5個(gè)月;

④浮萍每個(gè)月增加的面積都相等;

⑤若浮萍蔓延到所經(jīng)過(guò)的時(shí)間分別為.其中正確的是

A. ①② B. ①②③④ C. ②③④⑤ D. ①②⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為、,焦距為,直線(xiàn)與橢圓相交于兩點(diǎn),關(guān)于直線(xiàn)的對(duì)稱(chēng)點(diǎn)在橢圓上.斜率為的直線(xiàn)與線(xiàn)段相交于點(diǎn),與橢圓相交于、兩點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)求四邊形面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知兩個(gè)正數(shù)a,b滿(mǎn)足a+b=1

1)求證:;

2)若不等式對(duì)任意正數(shù)a,b都成立,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C:,直線(xiàn)l:y=kx+b與橢圓C相交于A、B兩點(diǎn).

(1)如果k+b=﹣,求動(dòng)直線(xiàn)l所過(guò)的定點(diǎn);

(2)記橢圓C的上頂點(diǎn)為D,如果∠ADB=,證明動(dòng)直線(xiàn)l過(guò)定點(diǎn)P(0,﹣);

(3)如果b=﹣,點(diǎn)B關(guān)于y軸的對(duì)稱(chēng)點(diǎn)為B,向直線(xiàn)AB是過(guò)定點(diǎn)?如果是,求出定點(diǎn)的坐標(biāo);如果不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案