已知函數(shù)f(x)=x2+blnx和g(x)=
x-9
x-3
的圖象在x=4處的切線(xiàn)互相平行.
(Ⅰ)求b的值; 
(Ⅱ)求f(x)的極值.
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的極值,利用導(dǎo)數(shù)研究曲線(xiàn)上某點(diǎn)切線(xiàn)方程
專(zhuān)題:計(jì)算題,導(dǎo)數(shù)的概念及應(yīng)用
分析:(Ⅰ)根據(jù)導(dǎo)數(shù)的幾何意義分別求出函數(shù)f(x)與g(x)在x=4處的導(dǎo)數(shù),根據(jù)函數(shù)f(x)和g(x)的圖象在x=4處的切線(xiàn)互相平行,建立等量關(guān)系,求出b即可;
(Ⅱ)求導(dǎo)數(shù),確定函數(shù)的單調(diào)性,即可求f(x)的極值.
解答: 解:(Ⅰ)g'(x)=
6
(x-3)2

∴g'(4)=6
∵函數(shù)f(x)=x2+blnx和g(x)=
x-9
x-3
的圖象在x=4處的切線(xiàn)互相平行
∴f'(4)=6
而f'(x)=2x+
b
x
,則f'(4)=8+
b
4
=6
∴b=-8…(5分)
(Ⅱ)顯然f(x)的定義域?yàn)椋?,+∞),f'(x)=
2x2-8
x

令f'(x)=0,解得x=2或x=-2(舍去)
∴當(dāng)0<x<2時(shí),f'(x)<0,當(dāng)x>2時(shí),f'(x)>0
∴f(x)在(0,2)上是單調(diào)遞減函數(shù),在(2,+∞)上是單調(diào)遞增函數(shù)
∴f(x)在x=2時(shí)取得極小值且極小值為f(2)=4-8ln2.
點(diǎn)評(píng):本題主要考查了利用導(dǎo)數(shù)研究曲線(xiàn)上某點(diǎn)切線(xiàn)方程,以及兩條直線(xiàn)平行的判定等基礎(chǔ)題知識(shí),考查運(yùn)算求解能力、推理論證能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3-
1
2
x2+bx+c.
(Ⅰ)若f(x)有極值,求b的取值范圍;
(Ⅱ)若f(x)在x=1處取得極值,且f(x)有三個(gè)零點(diǎn)時(shí),求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(ax2+x)•ex,其中e是自然數(shù)的底數(shù),a∈R,
(1)當(dāng)a<0時(shí),解不等式f(x)>0;
(2)當(dāng)a=0時(shí),試判斷:是否存在整數(shù)k,使得方程f(x)=(x+1)•ex+x-2在[k,k+1]上有解?若存在,請(qǐng)寫(xiě)出所有可能的k的值;若不存在,說(shuō)明理由;
(3)若當(dāng)x∈[-1,1]時(shí),不等式f(x)+(2ax+1)•ex≥0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

欲修建一橫斷面為等腰梯形(如圖)的水渠,為降低成本必須盡量減少水與渠壁的接觸面,若水渠橫斷面面積設(shè)計(jì)為定值S,渠深h,則水渠壁的傾角α(0°<α<90°)應(yīng)為多大時(shí),方能使修建成本最低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,若a+c=1+
3
,b=1,sinC=
3
sinA.
(1)求角B
(2)設(shè)f(x)=2sin(2x+B)+4cos2x,求函數(shù)f(x)在區(qū)間[
π
2
,π]的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|x2-5x+4=0},B={x|(x-3)(x-a)=0,a∈R}.
(1)若a=1,求A∩B、A∪B;
(2)若A∩B≠∅,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}的前n項(xiàng)和為Sn,請(qǐng)證明Sn,S2n-Sn,S3n-S2n(n∈N+)成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x(lnx-ax)有兩個(gè)極值點(diǎn),則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P(2,1)在圓C:x2+y2+ax-2y+b=0上,點(diǎn)P關(guān)于直線(xiàn)x+y-1=0的對(duì)稱(chēng)點(diǎn)也在圓C上,則圓C的標(biāo)準(zhǔn)方程為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案