A. | $\frac{\sqrt{2}a}{3}$ | B. | $\frac{\sqrt{3}a}{3}$ | C. | $\frac{\sqrt{6}a}{3}$ | D. | $\frac{\sqrt{5}a}{3}$ |
分析 取BC中點D,連結(jié)AD,作PO⊥平面ABC,交AD于O,由此能求出點P到平面ABC的距離PO.
解答 解:∵在四面體P-ABC中,PA,PB,PC兩兩垂直,PA=PB=PC=a,
∴AB=AC=BC=$\sqrt{2}$a,
取BC中點D,連結(jié)AD,作PO⊥平面ABC,交AD于O,
則AD=$\sqrt{2{a}^{2}-\frac{1}{2}{a}^{2}}$=$\frac{\sqrt{6}}{2}a$,
∴AO=$\frac{2}{3}$×$\frac{\sqrt{6}}{2}a$=$\frac{\sqrt{6}}{3}a$,
∴點P到平面ABC的距離PO=$\sqrt{{a}^{2}-(\frac{\sqrt{6}}{3}a)^{2}}$=$\frac{\sqrt{3}}{3}a$.
故選:B.
點評 本題考查點到平面的距離的求法,是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng).
科目:高中數(shù)學 來源: 題型:選擇題
A. | [-$\frac{1}{6}$,$\frac{1}{6}$] | B. | [-$\frac{\sqrt{6}}{6}$,$\frac{\sqrt{6}}{6}$] | C. | [-$\frac{1}{3}$,$\frac{1}{3}$] | D. | [-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 圖象關于點$({-\frac{π}{6},0})$中心對稱 | B. | 圖象關于$x=-\frac{π}{6}$軸對稱 | ||
C. | 在區(qū)間$[{-\frac{5π}{12},-\frac{π}{6}}]$單調(diào)遞增 | D. | 在$[{-\frac{π}{12},\frac{5π}{12}}]$單調(diào)遞增 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (0,$\frac{1}{2}$) | B. | (0,1) | C. | ($\frac{1}{2}$,1) | D. | ∅ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{\sqrt{2}}}{2}$ | B. | $-\frac{{\sqrt{2}}}{2}$ | C. | $-\frac{1}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com