分析 利用遞推關系可得:an+4=an.利用周期性即可得出.
解答 解:∵a1=2,an+1=$\frac{{1+{a_n}}}{{1-{a_n}}}$(n∈N*),
∴a2=$\frac{1+2}{1-2}$=-3,a3=$\frac{1-3}{1+3}$=-$\frac{1}{2}$,a4=$\frac{1-\frac{1}{2}}{1+\frac{1}{2}}$=$\frac{1}{3}$,a5=$\frac{1+\frac{1}{3}}{1-\frac{1}{3}}$=2,…,
∴an+4=an.
則該數列前2016項積a1•a2…a2015•a2016=$({a}_{1}{a}_{2}{a}_{3}{a}_{4})^{504}$=$[2×(-3)×(-\frac{1}{2})×\frac{1}{3}]^{504}$=1,
故答案為:1.
點評 本題考查了數列遞推關系、數列的周期性,考查了推理能力與計算能力,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | [2,3] | B. | [1,4] | C. | (-∞,2]∪[3,+∞) | D. | (-∞,1]∪[4,+∞) |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 1 | C. | $\frac{\sqrt{2}}{2}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | $\frac{3}{2}$ | C. | $\frac{3}{2}$或$\frac{2}{3}$ | D. | -$\frac{2}{3}$或-$\frac{3}{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com